Обо всем на свете

Примеры применения современных химических технологий. Традиционные материалы с новыми свойствами. Условия, влияющие на выбор аппаратурного оформления химико-технологического процесса

Каждый учитель хочет, чтобы его предмет вызывал глубокий интерес у школьников, чтобы ученики умели не только писать химические формулы и уравнения реакций, но и понимать химическую картину мира, умели логически мыслить, чтобы каждый урок был праздником, маленьким представлением, доставляющим радость и ученикам и учителю. Мы привыкли, что на уроке учитель рассказывает, а ученик слушает и усваивает. Слушать готовую информацию – один из самых неэффективных способов учения. Знания не могут быть перенесены из головы в голову механически (услышал – усвоил). Многим кажется, что нужно только заставить слушать ученика и дело тут же пойдет на лад. Однако ученик, как любая личность, наделен свободой воли, с которой нельзя не считаться. Поэтому нарушить этот природный закон и подчинить их себе даже ради благих целей невозможно. Желательного результата на этом пути добиться нельзя.

Отсюда следует, что необходимо сделать из ученика активного соучастника учебного процесса. Ученик может усвоить информацию только в собственной деятельности при заинтересованности предметом. Поэтому учителю нужно забыть о роли информатора, он должен исполнять роль организатора познавательной деятельности ученика.

Можно выделить различные виды деятельности по освоению нового материала учеником: материальную, материализованную и интеллектуальную. Под материальной деятельностью понимают деятельность с объектом изучения. Для химии таким объектом является вещество, т.е. материальной деятельностью на уроках химии является проведение опытов. Опыты могут проводить ученики или демонстрироваться учителем.

Материализованная деятельность – это деятельность с материальными моделями, формулами, табличным, цифровым, графическим материалом и т.д. В химии – это деятельность с материальными моделями молекул, кристаллическими решетками, химическими формулами, решение химических задач, сопоставление физических величин, характеризующих изучаемые вещества. Любая внешняя деятельность (деятельность руками) отражается в мозге, т.е. переходит во внутренний план, в интеллектуальную деятельность. Проводя опыты, составляя химические формулы и уравнения, сопоставляя цифровой материал, ученик делает выводы, систематизирует факты, устанавливает определенные взаимосвязи, проводит аналогии и т.д.

Итак, учитель должен организовать на уроке для ученика все виды учебно-познавательной деятельности. Необходимо, чтобы учебно-познавательная деятельность ученика соответствовала тому учебному материалу, который должен быть усвоен. Необходимо, чтобы в результате деятельности, ученик самостоятельно приходил к каким-либо выводам, чтобы сам для себя созидал знание.

Важнейшим принципом дидактики, является принцип самостоятельного созидания знаний, который заключается в том, что знание учеником не получается в готовом виде, а созидается им самим в результате организованной учителем определенной познавательной деятельности.

Самостоятельное открытие малейшей крупицы знания учеником доставляет ему огромное удовольствие, позволяет ощутить свои возможности, возвышает его в собственных глазах. Ученик самоутверждается как личность. Эту положительную гамму эмоций школьник хранит в памяти, стремится пережить еще и еще раз. Так возникает интерес не просто к предмету, а что более ценно – к самому процессу познания – познавательный интерес. Развитию познавательных и творческих интересов у учащихся способствуют различные виды технологий: компьютерные технологии, технология проблемного и исследовательского обучения, технология игрового обучения, использование тестов.

1. Компьютерная технология

Использование компьютера и мультимедийных технологий дают положительные результаты при объяснении нового материала, моделировании различных ситуаций, при сборе нужной информации, при оценке ЗУН и т. д., а также позволяют на практике реализовать такие методы обучения, как: деловые игры, упражнения по решению проблем, презентации и прочее. Компьютерная технология дает возможность располагать таким объемом информации, которым не владеют учителя, опирающиеся на традиционные методы обучения. В мультимедийных обучающих программах используются анимации и звуковое сопровождение, которые, воздействуя сразу на несколько информационных каналов обучаемого, усиливают восприятие, облегчают усвоение и запоминание материала. На своих уроках использую различные программы на компакт дисках, которые помогают мне для объяснения новых или повторения старых тем, закрепить и систематизировать полученные знания. Пример одного урока. Тема: “Подгруппа кислорода, характеристика. Получение кислорода”. В процессе урока использовался мультимедиа проектор, где на экране демонстрировались опыты, которые в школьной лаборатории продемонстрировать невозможно. Так же на экране проектировались несколько таблиц. Ребятам предлагалось проанализировать, сравнить и сделать вывод. Из вышесказанного приходим к выводу, что компьютерная технология повышает уровень обучения и вызывает интерес учащихся к предмету.

2. Технология проблемного обучения

Технология проблемного обучения предполагает создание под руководством учителя проблемных ситуаций и активную самостоятельную деятельность учащихся по их разрешению, в результате чего и происходит творческое овладение знаниями, навыками, умениями и развитием мыслительных способностей. Проблемные ситуации на уроке могут возникать самым неожиданным образом. Например, в 8-ом классе при изучении темы “Электроотрицательность” ученик задал вопрос: “Водород отдает электроны литию или наоборот?” Одноклассники ответили, что электроны отдает литий, так как у него радиус атома больше. Тут же другой ученик спросил: “А во что превратится тогда водород?” Мнения разделились: одни посчитали, что атом водорода, присоединяя электрон, превратился в атом гелия, так как у него стало два электрона, а другие не согласились с этим, возразив, что у гелия заряд ядра +2, а у данной частицы +1. Так что же это за частица? Возникла проблемная ситуация, которую можно разрешить, ознакомившись с понятием об ионах. Проблемную ситуацию на уроке может создать и сам учитель. Пример урока. Тема: “Простые и сложные вещества”. Учитель предоставляет ученику широкое поле деятельности: задает проблемные вопросы, предлагает из перечня различных веществ выписать отдельно простые и сложные вещества и подводит к тому, чтобы ученик сам, используя свой жизненный опыт, знания предыдущих уроков, попытался сформулировать понятие простого и сложного вещества. Ученик сам для себя созидает знания, так возникает интерес не просто к предмету, а к самому процессу познания.

3. Технология исследовательского обучения

Исследовательская деятельность школьников – это совокупность действий поискового характера, ведущих к открытию неизвестных фактов, теоретических знаний и способов деятельности. Таким путем учащиеся знакомятся с основными методами исследования в химии, овладевают умениями самостоятельно добыть новые знания, постоянно обращаясь к теории. Привлечение опорных знаний для решения проблемных ситуаций предполагает формирование и совершенствование как общеучебных, так и специальных умений учащихся (проводить химические опыты, соотносить наблюдаемые явления с изменениями состояния молекул, атомов, ионов, проводить мысленный химический эксперимент, моделировать сущность процессов и т. п.). Исследование может проводиться с целью получения новых знаний, обобщения, приобретения умений, применять полученные знания, изучения конкретных веществ, явлений, процессов. Так, при изучении темы “Соли азотной кислоты” в 9-ом классе использую элементы исследовательской работы. Исследование включает: проведение теоретического анализа; прогнозирование способов получения веществ и их свойств; составление плана экспериментальной проверки и его выполнение; формулирование вывода. Получается логическая цепочка: теоретический анализ – прогнозирование – эксперимент. Майкл Фарадей говорил: “Ни одна наука не нуждается в эксперименте в такой степени как химия. Ее основные законы, теории и выводы опираются на факты. Поэтому постоянный контроль опытом необходим.” Для систематизации получаемых знаний учащиеся заполняют таблицу:

Соли азотной кислоты

Исследовательская работа учащихся занимает на уроке больше времени, чем выполнение заданий по образцу. Однако затраты времени впоследствии компенсируются тем, что учащиеся быстро и правильно выполняют задания, могут самостоятельно изучать новый материал. Кроме того, повышается осознанность и прочность их знаний, появляется устойчивый интерес к предмету.

4. Технология игрового обучения

Интеллектуально-творческие игры (ИТИ) стимулируют развитие познавательных интересов учащихся, способствуют развитию их интеллектуально-творческих способностей, дают возможность ребятам самоутвердиться и реализовать себя в интеллектуально-творческой сфере через игру, помогают восполнить дефицит общения. ИТИ могут быть использованы не только во внеклассной и внеурочной работе, но и на уроках (при изучении нового материала, повторении пройденного, контроля знаний учащихся и т. д.)

Наиболее сложны и трудоемки деловые и ролевые игры. Проведение подобных игр позволяет достигать следующих целей: научить учащихся выделять главное в содержании учебного материала, излагать его в краткой форме; развивать навыки анализа текста, ассоциативное мышление, самостоятельность суждений, способствовать самоопределению учащихся, развивать коммуникативные способности, расширить кругозор, повторять и обобщать изученный материал. В своей практике я систематически использую игровые формы организации контроля знаний и постоянно замечаю, как это повышает интерес учащихся к изучаемому материалу и предмету в целом, как учащиеся, которые в последнее время так мало читают, вдруг начинают листать книги, справочники, энциклопедии. Так на уроках, при изучении тем, связанных с экологией, например по теме “Природные источники углеводородов и их переработка”, применяю ролевые игры с применением экспертных групп. Класс разбивается на две группы: “специалистов” и “журналистов”. Первые подбирают материал и подготавливают наглядное пособие. Вторые готовят вопросы, которые они должны задавать во время игры.

Для закрепления материалов в 8 – 9 классах использую дидактические игры: “Химические кубики”, “Химическое лото”, “Крестики-нолики”, “Найди ошибку”, “Химический бой”. Так же на внеклассных занятиях провожу зрелищные интеллектуально-творческие игры: “КВН”, “Что, где, когда”, “Звездный час”.

5. Использование тестов на уроках химии

Использование тестов на уроках химии также занимает видное место в процессе внедрения новых технологий. Что дает возможность массовой проверки знаний учащихся. Тестовая методика – универсальное средство проверки знаний, умений. Тесты являются экономной целенаправленной и индивидуальной формой контроля. Систематическая проверка знаний в виде тестов способствует прочному усвоению учебного предмета, воспитывает сознательное отношение к учебе, формирует аккуратность, трудолюбие, целеустремленность, активизирует внимание, развивает способность к анализу. При тестовом контроле обеспечиваются равные для всех обучаемых условия проверки, то есть повышается объективность проверки знаний. Этот метод вносит разнообразие в учебную работу, повышает интерес к предмету. Итоговые контрольные работы в 8 – 10 классах провожу в форме теста.

В условиях постоянного развития науки и промышленности химия и химическая технология предлагают миру постоянные инновации. Как правило, их суть заключается в совершенствовании методов переработки сырья в предметы потребления и/или средства производства. Происходит это благодаря целому ряду процессов.

Новые химические технологии позволяют:

  • вводить в хозяйственную деятельность новые виды сырья и материалов;
  • перерабатывать абсолютно все виды сырья;
  • заменять дорогостоящие компоненты более дешевыми аналогами;
  • комплексно использовать материалы: получать из одного вида сырья разные продукты и наоборот;
  • рационально расходов, вторичная переработка.

Можно сказать, что общая химическая технология, во многом перераспределяет и регулирует производственные процессы, что на сегодняшний день очень актуально в силу множества положительных факторов, имеющих значение для людей, связанных с промышленностью.

Классификация и описание подотраслей

Химические технологии можно классифицировать по типам веществ, с которыми ведется работа: органическими и неорганическими. Специфика работы зависит от поставленных задач и особенностей сферы, на которую ориентирован конечный продукт.

Химическая технология неорганических веществ - это например, производство кислот, соды, щелочей, силикатов, минеральных удобрений и солей. Все эти продукты широко используются в разных отраслях промышленности, в частности, металлургии, а также в сельском хозяйстве и др.

В фармацевтике и машиностроении часто используют каучуки, спирт, пластмассы, различные красители и т.д. Их производством занимаются предприятия, использующиетехнологии получения органических веществ. Многие из этих предприятий занимают серьезные позиции в отрасли и совей работой существенно влияют на экономику государства.

Абсолютно все процессы и аппараты химической технологии подразделяются на пять основных групп:

  • гидромеханические;
  • тепловые;
  • диффузионные;
  • химические;
  • механические.

В зависимости от особенностей организации, процессы химической технологии бывают непрерывные и периодические.

Современные задачи химической технологии

В связи с повышением интереса к экологической ситуации в мире возрос спрос на инновации, способные оптимизировать процессы производства, уменьшить объемы расходуемого сырья. Это касается также энергетических затрат. Данный вид ресурсов является очень ценным в рамках производства, потому за его расходованием необходимо следить и по возможности минимизировать. С этой целью сегодня активно разрабатываются и внедряются энерго- и ресурсосберегающие процессы в химической технологии. С их помощью производство рационализируют, предотвращая чрезмерные затраты расходных материалов разных категорий. Таким образом, уменьшается вредное воздействие технологий химического производства и антропогенных факторов на природу.

Химическая технология в промышленности на сегодняшний день стала неотъемлемой частью процессов изготовления конечного продукта. Сложно оспорить тот факт, что именно эта сфера человеческой деятельности оказывает наиболее пагубное влияние на состояние планеты в целом. Именно поэтому ученые делают все возможное для предотвращения экологической катастрофы, хотя темпы популяризации и внедрения таких разработок все еще недостаточны.

Применение современных химических технологий способствует улучшению состояния природы, минимизируя объемы используемых в производстве материалов, обеспечивая замену токсичных веществ более безопасными и внедрение в производство новых соединений и т.д. В задачей является восстановление ущерба, нанесенного окружающей среде: истощение ресурсов планеты, загрязнение атмосферы. На протяжении последних лет особенно активно проводятся различные исследования в сфере экологии и рационализации влияния производств на окружающую среду. Обязательный характер приобретает совмещение эффективной деятельности предприятия с безопасностью и нетоксичностью конечных продуктов.

Теоретические основы химической технологии

По мере развития смежных отраслей, подвергаются постоянной модернизации и обновлению основные процессы и аппараты химической технологии, глубже изучаются основные аспекты производства, принципы их работы и эксплуатация машин, используемых для выполнения операций. Базу таких дисциплин составляют теоретические основы химической технологии.

В государствах, признанных мировыми лидерами, обучение студентов на технических специальностях именно в этом направлении считается наиболее важным. Причиной тому, во-первых, определяющая роль процессного инжиниринга в деятельности химической промышленности. А во-вторых, растущее значение данной дисциплины на межотраслевом уровне.

Несмотря на существенные отличия между разными отраслями промышленности, в их основе лежат одни и те же принципы, вписываются различные физические закономерности, химические процессы, тесно взаимосвязанные с современными инженерными отраслями, в том числе материаловедением. Химические технологии за последние годы глубоко проникли даже в те сферы, где допустить их присутствие никому не приходит в голову. Таким образом, на современных рынках все чаще заходит речь о роли процессного инжиниринга в более глобальном смысле, нежели в рамках операций одной отрасли.

Основы химической технологии в отечественном образовании

Успешное развитие той или иной отрасли невозможно при отсутствии качественных учебных заведений, выпускающих квалифицированных специалистов. Поскольку химическая промышленность является важной составляющей экономики страны, требуется создать все необходимые условия для подготовки ценных кадров в этой сфере. На сегодняшний день основы химической технологии являются частью обязательной программы по смежным специальностям во многих высших учебных заведениях по всему миру.

К сожалению, принципы обучения техническим направлениям в России и некоторых странах СНГ кардинально отличаются от методик, принятых в европейских странах и Америке. Это, как правило, негативно сказывается на качестве высшего образования. Например, основные акценты все еще делаются на узких химико-технологических специальностях, а также много внимания уделяется конструкторско-эксплуатационным отраслям механики. Столь узкопрофильные характеристики высшего образования стали основной причиной отставания отечественных производств от зарубежных по таким критериям, как качество продукции, ресурсоемкость, экологичность и т.д.

Основная ошибка состояла в недооцененности процессного инжиниринга как системообразующей и всесторонне применимой дисциплины, и на данный момент основная задача отечественной промышленности - уделять намного больше внимания ее освоению и развитию. На сегодняшний день вопросы подготовки квалифицированных кадров, а также налаживания и оптимизации производства - наиболее насущные проблемы на территории СНГ и РФ в частности.

Урок-семинар 11 класс

Этот семинар, рассчитанный на 2 ч в непрофильных по отношению к химии классах, на 3 ч в общеобразовательных классах и на 4–5 часов в классах естественно-научного профиля, проводится как обобщающий в заключении школьного курса и ставит своей задачей показать учащимся роль химии как производительной силы общества.

П л а н с е м и н а р а

1. Химическая технология (определение, история возникновения и развития, роль в современном производстве, классификация процессов химического производства, задачи).

2. Биотехнология (определение, этапы становления, направления биотехнологии, области применения).

3. Нанотехнология (определение, подходы в нанотехнологии и их характеристика, наноматериалы, области применения).

Учитель (вступительное слово). Современный мир характеризуется стремительным развитием научно-технического прогресса. Помимо совершенствующейся традиционной химической технологии, бурно развиваются такие направления науки и отрасли промышленности, которые еще совсем недавно воспринимались как экзотические: биотехнология и нанотехнология. Они приобретают все большую роль в различных сферах жизни каждого человека в отдельности и общества в целом: в быту (вряд ли найдется человек, который не слышал о ГМО – генно-модифицированных организмах), в экономике, промышленности и сельском хозяйстве (подсчитано, что к 2015 г. товары и услуги, произведенные на основе нанотехнологий, будут стоить не один триллион долларов), в международных отношениях (началась мировая гонка за лидерство в области нанотехнологий, в ней сегодня преуспевают США, Япония и Китай). Россия только недавно включилась в эту гонку – принята приоритетная национальная программа по развитию нанотехнологий, на которую правительство выделяет значительные средства. Понятно, что эта область науки и производства потребует подготовки специалистов высокого класса. Очевидно, что их подготовка будет вестись на специально созданных отделениях и факультетах ведущих российских университетов. Также очевидно, что первое знакомство с био- и нанотехнологиями вам должна дать химия.

Однако начнем с химической технологии .

Химическая технология

1-й ученик. Технология – это наука о производстве. Химическая технология – один из важнейших разделов технологии, под которым понимают науку о наиболее экономичных методах и средствах переработки природного сырья в продукты потребления и промежуточные продукты для других отраслей материального производства.

Рассмотрим кратко историю возникновения и развития химической технологии. Сначала она была описательным разделом прикладной химии. Затем, в первой половине ХIХ в., химическая технология стала отдельной отраслью знаний. В 1803 г. в Российской академии наук создается кафедра химической технологии. Окончательно химическая технология становится самостоятельной научной дисциплиной в начале ХХ в., когда было разработано учение об основных процессах и аппаратах химического производства и общих закономерностях химико-технологических процессов.

Новым этапом в становлении химической технологии явилось использование в конце 60-х гг. ХХ в. идей, методов и технических средств кибернетики в химическом производстве, в результате развития которых появились математическое моделирование и компьютерные технологии для оптимизации и автоматизации химических процессов.

Второй учащийся, приготовивший сообщение о роли химической технологии как научно-производственной базы важнейших отраслей промышленности, раскрывает ее, используя схему 1.

Схема 1

Двое других учащихся рассказывают о классификации процессов химического производства. Их сообщение сопровождается демонстрацией моделей этих процессов, использующихся при изучении химии.

3-й ученик. Все многообразие процессов химического производства сводится к 5-ти группам.

1. Механические – измельчение, грохочение*, гранулирование, таблетирование, транспортирование твердых материалов, упаковка. (Демонстрация видеофрагментов и образцов продуктов этой группы химических процессов (гранул, таблеток, образцов упаковок и др.).)

2. Гидродинамические – перемещение жидкостей и газов по трубопроводам и аппаратам, пневматический транспорт, флотация, центрифугирование, осаждение, декантация, перемешивание. (Демонстрация видеофрагментов конкретных химических производств, действия центрифуги (учитель акцентирует внимание учащихся, что этот процесс широко используется и в бытовой технике – стиральных машинах, сепараторах и т.д.), флотации порошка серы, осаждение примесей, содержащихся в воде, с помощью коагулянтов, декантации раствора с отстоявшегося известкового молока, перемешивания растворов с помощью стеклянных палочек, снабженных резиновым наконечником (учитель просит привести примеры перемешивания, знакомые учащимся из бытовой практики).)

4-й ученик (продолжает классификацию процессов химического производства).

3. Тепловые – испарение, конденсация, нагревание, охлаждение, выпаривание . (Демонстрация видеофрагментов конкретных химических производств и лабораторных установок, а также: дистилляции воды в дистилляторе или самодельной установке, выпаривание раствора поваренной соли.)

4. Диффузионные – абсорбция, адсорбция, дистилляция, ректификация, сушка, кристаллизация, сублимация, экстрагирование, фильтрование, ионообмен. (Демонстрация видеофрагментов конкретных химических производств и лабораторных установок, оборудования и приборов (установки для фильтрования, муфельной печи, кристаллизатора, ионообменников, в том числе и бытовых ионообменных фильтров для воды), а также: абсорбции на примере растворения хлороводорода или аммиака в воде («фонтан в колбе»), адсорбции активированным углем красителя из раствора, экстрагирования хлорофилла этиловым спиртом.)

5. Химические, в основу которых положено химическое превращение исходного сырья.

Эту группу технологических процессов химического производства раскрывают также два ученика.

5-й ученик. Химические процессы можно классифицировать по различным признакам.

По сырью: минеральное, животное, а также переработка угля, нефти, газа. (учителю будет уместно попросить учащихся вспомнить коксохимическое производство и основные направления переработки нефти, природного и попутного газов.)

По потребительскому или товарному признаку: производство красителей, удобрений, лекарств и т.д. (учитель просит учащихся вспомнить классификацию и производство важнейших минеральных удобрений.)

По группам периодической системы : получение щелочных и щелочно-земельных металлов, алюминия и др. (учитель просит учащихся вспомнить электролитическое получение щелочных и щелочно-земельных металлов и алюминия.)

6-й ученик. Химические процессы классифицируют также по следующим признакам.

По типам химических реакций: окисление, восстановление, гидрирование, хлорирование, полимеризация и т.д. (учитель просит учащихся вспомнить и привести примеры соответствующих реакций.)

По фазе: гомогенные (жидкофазные и газофазные), гетерогенные. (учитель просит учащихся вспомнить и привести примеры соответствующих процессов.)

Учитель (резюмирует). Современная химическая технология ставит задачи комплексного использования сырья и энергетики, комбинирования и кооперирования различных производств, непрерывности технологических процессов на производстве, экологической безопасности и экономической целесообразности.

Однако следует подчеркнуть, что современное производство веществ и материалов нередко обращается к помощи живых организмов и биологических процессов, т.е. к биотехнологии.

Биотехнология

7-й ученик (дает определение и рассказывает об истории возникновения и развития биотехнологии). Биотехнология – один из важнейших разделов технологии, под которым понимают науку об использовании живых организмов и биологических процессов в производстве.

Можно выделить три этапа становления этой науки и отрасли производства: ранняя, или стихийная, биотехнология, новая биотехнология и новейшая биотехнология.

Ранняя, или стихийная, биотехнология связана со знакомыми человеку с древнейших времен микробиологическими процессами брожения, лежащими в основе: хлебопечения, виноделия, пивоварения, сыроварения, получения кисломолочной продукции, квашения, получения льняного волокна и др.

В основе процессов стихийной биотехнологии лежит деятельность микроорганизмов и ферментов, которые сохраняют свою биологическую активность в определенных условиях и вне живой клетки. (Учащийся сопровождает эту часть своего сообщения демонстрацией коллекции продуктов питания, изготовленных этим путем (бутылка вина, кусок хлеба и сыра и др.).)

Новая биотехнология связана с введением в науку термина «биотехнология» с середины 70-х гг. ХХ в. и использованием биологических методов для борьбы с загрязнением окружающей среды (биологическая очистка), производства ценных биологически активных веществ (антибиотиков, ферментов, гормональных препаратов, витаминов и др.), для защиты растений от вредителей и болезней. (Демонстрация образцов биотехнологической продукции.) На основе микробиологического синтеза были разработаны промышленные методы получения белков и аминокислот, используемых в качестве кормовых добавок.

Новейшая биотехнология связана не только с развитием многообразного микробиологического синтеза, но, в первую очередь, с возникновением и развитием генной инженерии, клеточной инженерии и биологической инженерии. Достижения новейшей биотехнологии базируются на интеграции таких биологических дисциплин, как микробиология, биохимия, биофизика, молекулярная генетика и иммунология.

8-й ученик (рассказывает о генной инженерии). Генная инженерия – это раздел биотехнологии, связанный с целенаправленным конструированием новых, не существующих в природе, сочетаний генов, внедренных в живые клетки, способные синтезировать определенный продукт.

Сконструированные генными инженерами сочетания генов функционируют в клетке-реципиенте и синтезируют необходимый белок. Особый практический интерес представляет введение в геном животных и растений различных генных конструкций: как синтезированных, так и генов других животных, растений и человека. Такие растения и животные называются генетически измененными , а продукты их переработки – трансгенными продуктами . Трансгенная кукуруза добавляется в кондитерские и хлебобулочные изделия, безалкогольные напитки; модифицированная соя входит в состав рафинированных масел, маргаринов, жиров для выпечки, соусов для салатов, майонезов, макаронных изделий, вареных колбас, кондитерских изделий, белковых биодобавок, кормов для животных и даже детского питания. (Демонстрация коллекции пищевых продуктов, содержащих генно-модифицированные организмы (ГМО), и этикеток с их маркировкой.)

Генетическая модификация растений позволяет создать сорта растений с высоким уровнем устойчивости к сорнякам и вредителям. Это в несколько раз уменьшает расход гербицидов, ослабляя тем самым химическую нагрузку на окружающую среду. Сейчас за рубежом высеваются устойчивые к гербицидам трансгенные сорта хлопчатника, рапса, сои, кукурузы, сахарной свеклы.

В сельскохозяйственную практику входят трансгенные сорта с повышенными потребительскими свойствами, например, культуры гороха, сои, злаков с улучшенным составом белков. Созданы трансгенные помидоры без зернышек и на подходе бескосточковые черешня, арбуз, цитрусовые.

Методами генной инженерии в Канаде получен виноград, которому пересадили ген морозоустойчивости от дикой капусты, и в этой стране впервые появились виноградники.

В животноводстве с помощью генной инженерии получены высокопродуктивные породы животных (овец, свиней, кур и др.).

В фармакологии методы генной инженерии дали возможность создать высокоэффективные вакцины против герпеса, туберкулеза, холеры; в химической отрасли промышленности – новые формы дрожжей и бактерий, способных уничтожать разливы нефти.

9-й ученик (рассказывает о клеточной инженерии). Клеточная инженерия – метод конструирования клеток нового типа.

Культура клеток позволяет сохранять их жизнеспособность вне организма в искусственно созданных условиях жидкой или плотной питательной среды. Такие клоны клеток используют в качестве своеобразных фабрик для производства биологически активных веществ, например гормона эритропоэтина, стимулирующего образование красных кровяных телец. Методами клеточной инженерии получены факторы свертываемости крови (III и VIII) – для лечения гемофилии, инсулин – для лечения диабета, поверхностный белок вируса гепатита В – для получения соответствующей вакцины.

Наиболее известный обывателю феномен клеточной инженерии – клонирование живых организмов (вспомните знаменитую овечку Долли). Выведенные академиком В.?А.?Струнниковым клоны шелкопряда известны на весь мир.

Наиболее перспективным направлением сегодня является клонирование в области экспериментальной эмбриологии, успехи которой связаны, в первую очередь, с так называемыми эмбриональными стволовыми клетками. Самым главным свойством таких клеток является то, что генетическая информация, заключенная в их ядрах, находится как бы в состоянии покоя, т.е. в эмбриональных стволовых клетках еще не запущена программа дифференциации в ту или иную ткань. Они могут принять любую программу и превратиться в один из 150 возможных типов зародышевых клеток. Эмбриональные клетки лишь ждут специального сигнала, чтобы начать одно из своих превращений. Эта удивительная их способность продиктована избытком в клетке РНК всех генов, отвечающих за рост зародыша на ранней стадии развития эмбриона. Факторы, делающие эмбриональные клетки уникальными, позволяют использовать их для выращивания огромного массива тканей и любого человеческого органа. Следует отметить, что островки эмбриональных стволовых клеток имеются в различных органах и тканях. Именно эти клетки и дают возможность восстанавливать поврежденные органы и ткани и лечить множество тяжелых заболеваний. Однако необходимо отметить, что опыты по клонированию человека и выращиванию стволовых клеток эмбриона человека во многих странах запрещены.

10-й ученик (рассказывает о биологической инженерии). Биологическая инженерия – методы использования микроорганизмов в качестве биореакторов для получения промышленной продукции.

Этот раздел биотехнологии особенно важен для России, живущей, к сожалению, в основном за счет продажи ресурсов. Средняя отдача нефтяных месторождений у нас не превышает 50%. Компания «Татнефть», используя новую уникальную микробиологическую технологию регулирования микрофлоры нефтяных пластов, получила дополнительно около полумиллиона тонн нефти на месторождениях Башкирии.

Микробиологические технологии эффективны для получения цветных и черных металлов. Традиционная технология, основанная на обжиге, приводит к тому, что в атмосферу выбрасывается большое количество оксидов серы и азота, которые служат основой «кислотных дождей». Этих недостатков лишена технология, основанная на биологической инженерии. В Красноярском крае, например, работают восемь микробиологических ферментеров, позволяющих добывать золото из пород с низким содержанием этого металла. Современный мир, испытывающий острый дефицит меди, молибдена и других цветных металлов, с надеждой ждет разрешения его с помощью микробиологических методов.

Стоит отметить законченную в Институте микробиологии РАН работу над новым способом снижения концентрации метана в шахтах с использованием метанотрофных бактерий. Стоит ли говорить об актуальности этой работы на фоне нередких сообщений средств массовой информации о трагедиях на угольных шахтах.

Наиболее перспективным направлением биологической инженерии является создание иммобилизованных ферментов.

Иммобилизованными ферментами называются препараты ферментов, молекулы которых ковалентно связаны с полимерным носителем, нерастворимым в воде. Такие ферменты эффективны для применения в различных сферах народного хозяйства. Так, получаемая из дрожжей инвертаза может использоваться для производства искусственного меда; лактаза – для получения диетического молока с низким содержанием лактозы и глюкозо-галактозных спиртов из молочной сыворотки; уреаза – для очистки крови в аппарате «искусственная почка».

Разработаны иммобилизованные формы бактериальных протеаз, которые применяются для получения белковых гидролизатов и смесей аминокислот для зондового и внутривенного питания в медицинской практике. Для лечения сердечно-сосудистых заболеваний разработан препарат иммобилизованной стрептокиназы, который можно вводить в сосуды для растворения образовавшихся в них тромбов. Перспективно использование иммобилизованных ферментов для аналитических целей (в виде ферментных электродов).

Нанотехнология

11-й ученик (дает определение нанотехнологии и рассказывает о двух подходах, существующих в ней, выступление сопровождается компьютерной презентацией). Под нанотехнологией понимается управляемый синтез молекулярных структур для получения веществ и материалов не из обычных сырьевых ресурсов, а непосредственно из атомов и молекул с помощью специальных аппаратов, действующих на основе искусственного интеллекта.

Название новой науки образовалось в результате прибавления к слову «технология» приставки «нано», которая обозначает уменьшение масштаба измерений в миллиард раз: 1 нанометр (1 нм) составляет одну миллионную от миллиметра, т.е. 1 нм = 10 –9 м. Для того чтобы образно представить эту величину, используем следующее сравнение: 1 нм примерно в миллион раз меньше толщины страницы школьного учебника. Десять атомов водорода, расположенных в один ряд, имеют длину 1 нм, и, что удивительно, молекула ДНК человека имеет диаметр ровно 1 нм.

К нанотехнологиям относят процессы манипулирования объектами, имеющими размер от 1 до 100 нм.

В нанотехнологии вообще существуют только два подхода. Их принято условно называть «сверху вниз» и «снизу вверх».

Первый подход – «сверху вниз» основан на уменьшении размеров обрабатываемого сырья или материалов до микроскопических параметров. Так, например, получают полупроводниковые устройства, обрабатывая заготовки для них лазерными или рентгеновскими лучами. Эти лучи, проходя через трафарет, создают на исходном материале необходимую структуру чипа. Такой способ нанотехнологии называется фотолитографией (литография – это получение на материале оттиска изображения, вырезанного на камне). Аналогом его может служить нанесение рисунков или надписей на футболки. Разновидностью данного способа в наномире является импринт-литография . В этом случае на резиноподобный силикагельный полимер наносят узор с помощью зондовых инструментов, который затем покрывается своеобразными молекулярными чернилами. Оттиски такой «резиновой печати» можно делать на любой поверхности (например, для получения компьютерных чипов наноскопических размеров).

В результате получается запланированная конфигурация схемы. Разрешающая способность таких чипов (минимальный размер его элементов) определяется длиной волны лазера. Таким образом получают схемы с размером элементов до 100 нм. Следовательно, этот подход позволяет получать наиболее крупные материалы и устройства наномира.

Второй подход нанотехнологии – «снизу вверх» состоит в том, что необходимая конструкция осуществляется сборкой из элементов низшего порядка (атомов, молекул, кластеров и т.д.). Для этого типа нанотехнологий применяются инструменты зондового сканирования. Они могут двигать атомы или молекулы по поверхности подложки, толкая или поднимая их. В этом случае зонд сканирующего инструмента выступает в роли своеобразного экскаватора или бульдозера наномира.

Основными способами такого подхода в нанотехнологиях являются: молекулярный синтез, самосборка, наноскопическое выращивание кристаллов и полимеризация.

Молекулярный синтез заключается в создании молекул с заранее заданными свойствами путем их сборки из молекулярных фрагментов или атомов. Таким образом производятся медикаменты. Множество современных лекарств, включая антибиотики нового поколения или знаменитую виагру, являются продуктами молекулярного синтеза. Молекулярный наноскопический синтез решает и вопросы упаковки таких лекарств в особые молекулярные оболочки, позволяющие доставлять эти лекарства непосредственно в пораженные участки организма.

Самосборка – это такой метод нанотехнологий, который основан на способности атомов или молекул самостоятельно собираться в более сложные молекулярные структуры.

Принцип самосборки основан на принципе минимума энергии – постоянном стремлении атомов и молекул перейти на самый нижний из доступных для них уровней энергии. Если этого можно добиться, соединившись с другими молекулами, то исходные молекулы соединятся; если же для этого нужно изменить свое положение в пространстве, то они переориентируются.

Своеобразной моделью к иллюстрации принципа наименьшей энергии может служить древнегреческий миф о Сизифе, который с трудом поднимал камень на вершину горы, а тот упорно стремился скатиться по склону, т.е. занять наименьший уровень энергии.

Другой моделью, позволяющей наглядно представить самосборку, основанную на ориентации молекул в пространстве, является поведение компаса, который можно трясти, поворачивать, но стрелка его неизменно будет показывать на север, минимизируя энергию прикрепленного к ней небольшого магнита относительно поля Земли. Чтобы добиться такого положения, над стрелкой не нужно совершать никакой работы, она делает это естественно. Методы самосборки основаны на идее создания наноскопического сырья из атомов и молекул, которые, подобно стрелке компаса, естественно собираются в структуры необходимого материала.

В живых организмах самосборка является основой процессов ассимиляции, т.е. процессов синтеза белков, жиров, углеводов, полинуклеотидов, необходимых конкретному живому организму. Структурирование и сборка биологических тканей происходят на атомно-молекулярном уровне, причем живые организмы осуществляют их с высокой эффективностью. Наносинтезу о таком приходится только мечтать. Тем не менее, наноконструкторы вводят определенные атомы или молекулы на поверхность подложки или на ранее собранную наноструктуру. Далее молекулы исходного наносырья ориентируются в пространстве, собираясь в определенную наноструктуру. Отпадает необходимость медленного и нудного конструирования такой структуры с помощью зондового инструмента. В этом и состоит преимущество самосборки.

В настоящее время с помощью самосборки возможно создание компьютерных запоминающих устройств. Она также может использоваться для защиты поверхности от коррозии или придания ей особых свойств, например, как у тефлона, применяемого для изготовления посуды. С помощью самосборки изготовлены опытные образцы гидрофильного и гидрофобного стекол, которые могут найти широкое применение, например, в автомобилестроении, производстве строительных стекол, в оптике.

Наноскопическое выращивание кристаллов – это такой метод нанотехнологий, при котором кристаллы можно выращивать из раствора, используя кристаллы-зародыши (центры кристаллизации).

Кремниевые блоки, используемые для создания микрочипов, производятся именно таким образом.

Этот метод можно использовать для выращивания длинных, стержнеподобных углеродных нанотрубок или нанопроводов из кремния. Такие наноматериалы имеют уникальные проводящие свойства и используются во многих областях оптики и электроники.

Полимеризация – это такой метод нанотехнологий, в основе которого лежит получение наноматериалов в виде полимеров из исходных мономеров с помощью реакций полимеризации или поликонденсации. Для его осуществления применяют так называемые генные машины, позволяющие синтезировать различные фрагменты ДНК (их называют олигонуклеотидами от греч. «оligos» – немного, незначительно, в отличие от полинуклеотида – целой ДНК). Затем из этих фрагментов с помощью все тех же генных машин конструируют матрицы, необходимые для производства того или иного вещества. Синтезированные шаблоны ДНК вводятся в ДНК бактерий, которые затем производят множество копий нужного белка. Это позволяет эффективно строить белковые фабрики для получения практически любого выбранного протеина. Примером практического применения данного метода нанотехнологий является получение инсулина для лечения диабета.

12-й ученик (рассказывает о классификации и представителях некоторых групп наноматериалов). В 2004 в ФРГ, в г. Висбадене проходила седьмая Международная конференция по наноструктурным материалам, на которой была предложена следующая их классификация.

Нанопористые твердые вещества. Для их получения используют золь-гель технологию. В ее основе лежит сушка дисперсных систем. Продуктами такой технологии являются наноматериалы, содержащие оксиды металлов (Аl 2 O 3 , V 2 O 5 , Fe 2 O 3 и др.), которые могут применяться в качестве катализаторов, суперконденсаторов, топливных элементов и др.

Наночастицы – это, например, уже упомянутые выше олигонуклеотиды, применяемые в генных машинах для создания ДНК по производству нужного белка в промышленных масштабах. Кроме этого, это частицы носителей, применяемые для доставки лекарств в заданные точки организма.

Нанотрубки. Нанотрубки представляют собой совершенно новую форму материала. Различают полупроводниковые и металлические нанотрубки. Наибольший интерес представляют углеродные полупроводниковые нанотрубки, которые имеют форму крошечных цилиндров с диаметром от 0,5 до 10 нм и длиной примерно в 1 мкм. Однослойные углеродные нанотрубки можно представить себе в виде свернутого в рулон одного слоя графита (в отличие от фуллерена, молекула которого похожа на футбольный мяч, образованный из одного слоя графита).

(При рассмотрении нанотрубок учителю будет уместно напомнить о явлении аллотропии и особенно о четырех аллотропных модификациях углерода: алмазе, графите, карбине и фуллерене.)

Углеродные нанотрубки представляют собой подобную фуллерену кристаллическую структуру, но собранную в другую форму, а потому обладающую другими свойствами (недаром некоторые исследователи предлагают считать нанотрубки еще одной модификацией углерода). Углеродные нанотрубки способны поглощать и удерживать водород в больших количествах, поэтому представляют собой ценный материал для создания двигателей на водородном топливе и водородных батарей. Углеродные нанотрубки обладают полупроводниковой способностью. Использование их позволит прийти к низкотемпературным катодам, в которых напряжение будет снижено до 500 В (в отличие от ныне действующих телевизионных катодов, которые работают под напряжением 10 кВ). Многослойные нанотрубки имеют высокий предел прочности на растяжение, который может достигать 63 ГПа, что в 50–60 раз больше, чем у высококачественных сталей. Давление, которое могут выдерживать такие трубки, достигает 100 ГПа, что в тысячи раз выше, чем у традиционных волокон. Это позволяет использовать их при изготовлении материалов для пуленепробиваемых жилетов и стекол, а также для производства сейсмоустойчивых строительных материалов. Углеродные нанотрубки имеют очень низкую плотность, что позволяет получать из них высокопрочные композиционные материалы, потребность в которых испытывают военная и авиационно-космическая техника, а также автомобилестроение. Углеродные нанотрубки обладают большой каталитической активностью, поэтому могут использоваться для проведения таких химических реакций, которые в обычных условиях невозможны, например прямой синтез этилового спирта из синтез-газа (смеси оксида углерода и водорода). Применение нанотрубок в качестве носителя катализатора определяется их химической устойчивостью и большой площадью поверхности.

Нанодисперсии – дисперсные системы, в которых частицы фазы имеют наноразмеры и распределены в жидкой среде. Их основное применение – это контролируемая доставка лекарственных средств в организм, а также производство современных косметических материалов (средства для загара, туши для ресниц, различные кремы).

Наноструктурные поверхности и пленки. В первую очередь, это поверхности искусственных и донорских органов, которые покрыты наноструктурными материалами, позволяющими избежать отторжения имплантируемых органов.

Нанокристаллы и нанозерна. Используя методы коллоидной химии, удалось получить в нанокристаллической форме многие известные материалы: полупроводники, магнитные материалы и т.п. Использование таких кристаллов в металлургии позволяет повысить прочность и другие качества стали. Из такой стали изготавливают не только более тонкие, но и более прочные трубы, выдерживающие высокое давление, например, в газоперерабатывающей и газотранспортной сферах. Нанокристаллы и нанозерна позволяют обрабатывать поверхности с молекулярной точностью. Их можно использовать и в медицине для изготовления противораковых препаратов нового поколения. Широкие возможности представляют нанозернистые материалы для создания светоизлучающих устройств с низким энергопотреблением, а также сред для магнитной записи со сверхвысокой скоростью.

Группа из двух-трех учащихся делает сообщение о применении нанотехнологий в различных областях жизни современного общества, используя схему 2 (см. с. 14 ).

Схема 2

Применение нанотехнологий в различных сферах
жизнедеятельности общества

13-й ученик. Энергетика. Альтернативой использованию ископаемого топлива (природного газа, нефти, угля и др.) является применение фотоэлектрических элементов, которые непосредственно превращают солнечный свет в электрическую энергию, – так называемых солнечных батарей и повышение их КПД. В основе таких устройств лежат, в первую очередь, кремний и, реже, германий. Кремниевые фотоэлементы используются в жилищном строительстве и промышленном производстве, а также в калькуляторах и др. Солнечный свет фокусируется на полупроводнике, в роли которого выступает один кристалл кремния или его поликристалл. Получение таких кристаллов и является задачей нанотехнологии. Другая альтернатива использования энергии, получаемой от сжигания ископаемого топлива, – создание новых топливных элементов, например углеродных нанотрубок, обладающих высокой адсорбционной способностью к водороду.

Опосредованно энергетические проблемы с помощью нанотехнологий решаются возможностью применения наноустройств в полупроводниковых информационных технологиях.

Электроника. Уже сейчас нанотехнология позволяет изготавливать полупроводниковые элементы размером от 30 до 100 нм. В перспективе размер таких элементов будет снижен до 35–50 нм. Такую возможность предоставит использование в электронной отрасли промышленности углеродных нанотрубок и запоминающих устройств нового типа (например, одноэлектронная память). В свою очередь, это позволит повысить скорость передачи информации примерно до 10 гигабит в секунду. Кроме этого, важное значение имеет совершенствование техники хранения информации, которая решается через создание терабитовых запоминающих устройств, позволяющих повысить степень плотности записи на магнитных дисках примерно в 1000 раз.

Авиация и космонавтика. В авиации нанотехнологии, в первую очередь, влияют на такой фактор развития авиационного транспорта, как создание новых конструкционных материалов. Два других фактора: развитие моторостроения и улучшения аэродинамики летательных аппаратов, – от нанотехнологии также зависят, но в меньшей степени. С помощью нанотехнологий будут созданы термостойкие керамические композитные материалы (т.е. материалы, состоящие из двух и более компонентов), способные выдерживать температуру 1000–1600 °С и полимерные композиты, выдерживающие температуру 200–400 °С. В космонавтике требования к композитам еще выше: они должны быть очень термостойкими (выдерживать температуры около 3000 °С), сверхлегкими и сверхпрочными. Именно такие материалы были использованы для изготовления нашего «Бурана» и используются при изготовлении американских «Шаттлов».

14-й ученик. Медицина. Нанотехнологии позволяют создать материалы с «молекулярным распознаванием» и организовать массовое производство биодатчиков, способных длительное время осуществлять мониторинг за организмом человека, что даст возможность проводить раннюю диагностику некоторых заболеваний. Кроме этого, существует перспектива использования для диагностики и лечения заболеваний особых наноскопических устройств, называемых нанороботами. Введенные в организм человека, они смогут очистить сосуды от атеросклеротических отложений, уничтожить молодые раковые опухоли, исправить поврежденные молекулы ДНК, провести полную диагностику, доставить лекарство к конкретным органам и даже клеткам и др. Создание и совершенствование так называемых ДНК-чипов позволит легко осуществлять анализ генетической информации отдельно взятого человека и проводить лечебный курс на основе создания индивидуальных лекарственных средств в соответствии с этой информацией. Применение нанотехнологий дает возможность получать новые биоматериалы и искусственные функциональные полимеры – заменители тканей человека.

С помощью нанотехнологий создаются наноинструменты и наноманипуляторы, используемые в медицине. Так, уже появились нанопинцеты и наноиглы. Например, для изготовления нанопинцета применяются две углеродные нанотрубки диаметром в 50 нм, расположенные параллельно на подложке из стеклянного волокна. Эти трубки сходятся и расходятся при подаче на них напряжения, имитируя пинцет. Японцы создали нанопинцет, длина которого всего 3 нм, что позволяет манипулировать отдельными молекулами. Отечественные ученые из Новосибирска предложили свои наноинструменты – наноиглы, способные производить инъекции внутрь клеток.

Нанотехнологии позволят также организовать производство биологически активных веществ методами самосборки. Для решения этой проблемы нанотехнологи особое внимание уделяют эмбриональным стволовым клеткам, которые способны превратиться в клетки различных органов человека (нервные, эпителиальные, клетки печени и т.д.). Процессы превращения стволовых клеток связаны с механизмами самосборки клеточных структур. Использование стволовых клеток поможет произвести замену поврежденных органов и частичный «ремонт» поврежденных участков.

Биотехнология. Эта область применения нанотехнологий уже была рассмотрена, но еще раз стоит обратить внимание на взаимосвязь и значение этих двух технологий. В первоначальном значении биотехнологией называлось использование методов синтеза ДНК для получения определенных белков на наноуровне. В роли «фабрик» белкового производства выступали бактерии кишечной палочки, у которой заменяли фрагмент ДНК на участок, необходимый для синтеза конкретного белка. Наиболее яркими примерами подобного конструирования являются получение инсулина, фактора роста организма (соматотропина) и фактора VIII (или коагулирующего фактора, вызывающего свертывание крови и используемого при гемофилии), которые широко используются в медицине.

15-й ученик. Сельское хозяйство. По данным ООН, в настоящее время на Земле проживает около 7 млрд человек, а по прогнозам к 2050 г. население планеты может достигнуть 100 млрд человек. Уже сейчас продовольственная проблема является глобальной для человечества. Любой обыватель может наблюдать за ростом цен на продукты питания изо дня в день.

Решение продовольственной проблемы человечества зависит, в первую очередь, от широкого применения генной инженерии и биотехнологии для создания сортов растений с повышенной урожайностью и питательной ценностью, а также в создании высокопродуктивных пород животных и штаммов микроорганизмов.

Наноинструменты и ферментативные методики, применяемые в биотехнологии и генной инженерии, позволяют решать эти задачи более быстрыми темпами. Так, бурно эволюционирует производство все новых сортов хорошо известной каждому генно-модифицированной сои. Традиционные сорта помидоров, картофеля, кукурузы, гороха, пшеницы, риса и т.д., а также экзотических батата и папайи в сельскохозяйственной практике уступают место созданным с помощью генной инженерии сортам, устойчивым к сорнякам и вредителям и обладающим повышенной урожайностью.

Экология. С помощью нанотехнологии можно защитить окружающую среду от вредных воздействий, связанных с повышением температуры атмосферы Земли, разрушением озонового слоя, загрязнением среды диоксином, кислотными дождями.

Средняя температура Земли только за 40 лет прошлого столетия выросла на 0,5 °С. Прогнозируется, что в новом столетии средняя температура возрастет еще на 3 °С. Последствия этого грозят человечеству многими бедами: уровень мирового океана поднимется на 65?см (будут подтоплены прибрежные территории многих стран), произойдет кардинальное изменение климата, смещение природных зон и др. Нанотехнологии предоставляют возможность уменьшить температурные воздействия на атмосферу Земли с помощью:

поиска альтернативных источников энергии,

совершенствования солнечных батарей,

уменьшения содержания оксида углерода(IV) в выхлопных газах.

Разрушение озонового слоя под воздействием широко используемых в промышленности и бытовой технике фреонов (хладагентов, аэрозолей) может привести к значительному росту заболеваний раком кожи и лейкемией. Поэтому перед нанотехнологиями стоит задача создания веществ и материалов, заменяющих фреоны.

Проблема загрязнения среды диоксином связана с широким применением хлорсодержащих соединений (поливинилхлорида, хлорированных углеводородов и т.д.) в промышленных целях.

С помощью нанотехнологий синтезируются новые материалы, способные заменить хлорсодержащие полимеры; создаются биодатчики длительного и точного мониторинга за окружающей средой; производятся нанопорошки для борьбы с загрязнениями окружающей среды, и, в первую очередь, с разливами нефти; конструируются нанофильтры, позволяющие предотвращать поступления диоксина и других отходов в окружающую среду, в том числе и выбросы в нее оксидов серы и азота транспортными и промышленными установками. Для последней цели немаловажную роль могут сыграть и созданные с помощью нанотехнологий катализаторы и их носители.

Оптика. Уменьшение размеров кристаллических зерен до нанометровых масштабов позволяет создавать из стеклообразных материалов новые оптические среды с очень высокими и регулируемыми коэффициентами преломления, изменением окраски, прочности и т.д. Такие среды называют наностеклами. Области их применения чрезвычайно многообразны. Например, с применением нанотехнологий на поверхности стекол создаются сотовые структуры, которые заполняются различными наноматериалами. Такие стекла могут использоваться для создания высокоэффективных устройств хранения и передачи цифровой информации. Также наностекла в комплекте с коротковолновыми лазерами позволят производить сверхмощные оптические запоминающие устройства и пленочные материалы с повышенной четкостью изображения. Наностекла могут применяться для изготовления оптических переключателей и тонких оптических волноводов. В сознании обывателя очки «хамелеоны» и изменяющие интенсивность затемнения автомобильные стекла редко связываются с представлениями о наномире, а ведь это именно так.

В Центре водных видов спорта в Пекине, где недавно завершилась олимпиада, крыша была изготовлена с применением наностекол, способных изменять интенсивность окраски в зависимости от интенсивности естественного освещения, а также выгибаться вовнутрь или наружу в зависимости от температурного режима.

Учитель. Нанонаука и нанотехнология являются интегрированным направлением современных, ранее считавшихся автономными, наук и технологий: физики, химии, биологии и их специализаций (биохимии, биофизики, атомной микроскопии), а также информационных технологий, биотехнологии, материаловедения. Следовательно, нанонаука носит междисциплинарный характер, а потому вполне логично предположить, что представление об этой науке потребуется в любой сфере вашей будущей профессиональной деятельности.

В эффективности этого семинара мы убедились на собственном опыте, когда проводили его в школе № 531 г. Москвы и школе № 33 г. Энгельса Саратовской области.

О.С.ГАБРИЕЛЯН,
С.А.СЛАДКОВ,
Е.Е.ОСТРОУМОВА

* Сортировка сыпучих материалов (угля, руды и др.) по крупности частиц (кусков) на специальных устройствах – грохотах. – Прим. ред .

увеличение единичной мощности узлов и агрегатов

Необходимость увеличения единичной мощности узлов связано с возрастанием потребности в продукции и ограничением площадей для размещения оборудования. При увеличении мощности сокращаются капитальные зааты и амортизационные отчисления на единицу готовой продукции. Сокращается численность обслуживающего персонала, что приводит к сокращению фонда заработной платы и увеличению производительности труда. Увеличение единичной мощности узлов наиболее характерно для непрерывных многотоннажных производств. В случае производства фармацевтических и косметических средств это не является определяющим фактором в большинстве случаев.

 разработка экологически чистых технологий, уменьшающих или исключающих загрязнение окружающей среды отходами производства (создание безотходных технологий)

Это очень важная проблема, особенно для производств, связанных с химическими превращениями веществ, в частности при производстве биологически активных веществ и субстанций, входящих в конечные выпускные формы. В то же время, в случае непосредственного производства лекарств и косметических средств проблема отходов не является столь важной. Это связано с тем, что по своей сути эти производства должны быть безотходными, а образование отходов возможно только при нарушении технологического регламента.

Использование совмещенных технологических схем

Эта проблема очень важна при организации производств малотоннажных продуктов. Для малотоннажных производств, в частности для промышленности тонкого органического синтеза, характерен очень большой ассортимент продукции. В то же время ряд продуктов может производиться с использованием сходных технологических приемов на одной и той же технологической схеме. То же самое имеет место и в случае производств фармацевтических препаратов и косметических средств, когда на одной и той же технологической схеме могут производиться аналогичные выпускные формы (таблетки, кремы, растворы) различных наименований.

Повышение энергетической эффективности производства

В случае производства фармацевтических и косметических препаратов эта проблема не имеет большого значения, так как в подавляющем большинстве случаев процессы протекают при комнатной температуре и не имеют высокого теплового эффекта.

Следующим важным вопросом, который мы должны рассмотреть с точки зрения общих вопросов организации производства, являются условия, влияющие на выбор аппаратурного оформления химико-технологического процесса и способ организации процесса.

1.2.3. Условия, влияющие на выбор аппаратурного оформления химико-технологического процесса

Качество целевого продукта определяется строгим соблюдением норм технологического регламента и грамотным выбором основного оборудования, необходимого для реализации производства. Под основным оборудованием подразумевается то оборудование, в котором проходят основные технологические стадии: химические реакции, приготовление исходных компонентов, производство целевых конечных продуктов и т.д. Остальное оборудование, которое необходимо для обеспечения технологического процесса, является вспомогательным. Таким образом, первой задачей, которую необходимо решить при организации производства, является выбор технологического оборудования. Этот выбор определяется рядом условий, некоторые из которых приведены ниже

Температура и тепловой эффект процесса

Определяют выбор теплоносителя и конструкцию элементов поверхности теплообмена.

Давление

Определяет материал аппарата и конструктивные особенности оборудования по механической прочности.

Среда процесса

Определяет выбор материала аппарата с точки зрения коррозионной устойчивости и способ защиты от коррозии. В случае производства фармацевтических препаратов и косметических средств на выбор материала аппарата определяющее влияние оказывают требования, предъявляемы к качеству конечного продукта, особенно по содержанию примесей металлов и органических соединений.

Агрегатное состояние реагирующих веществ

Определяет способ организации процесса (периодический или непрерывный), способ загрузки исходных компонентов и выгрузки конечных продуктов, конструкцию перемешивающих устройств.

Кинетика процесса

Определяет способ организации процесса и тип оборудования.

Способ организации процесса

Определяет выбор типа оборудования.

Долгое время необходимые человеку товары повседневного спроса (продукты питания, одежда, краски) производились путем переработки преимущественно природного сырья растительного происхождения. Современные химические технологии позволяют синтезировать из сырья не только естественного, но и искусственного происхождения многочисленную и многообразную по своим свойствам продукцию, не уступающую природным аналогам. Потенциальные возможности химических превращений природных веществ поистине безграничны. Все возрастающие потоки природного сырья: нефти, газа, угля, минеральных солей, силикатов, руды и т.п. – превращаются в краски, лаки, мыло, минеральные удобрения, моторное топливо, пластмассы, искусственные волокна, средства защиты растений, биологически активные вещества, лекарства и различное исходное сырье для производства других необходимых и ценных веществ.

Темпы научно-технических разработок химических технологий быстро растут. Если в середине XIX в. на промышленное освоение электрохимического процесса получения алюминия потребовалось 35 лет, то в 50-е годы XX в. крупномасштабное производство полиэтилена при низком давлении было налажено менее чем за 4 года. На крупных предприятиях развитых стран примерно 25% оборотных средств расходуется на научно-исследовательские работы, разработку новых технологий и материалов, что позволяет примерно через 10 лет существенно обновлять ассортимент выпускаемой продукции. Во многих странах промышленные предприятия выпускают около 50% продукции, которая 20 лет назад вообще не производилась. На некоторых передовых предприятиях ее доля достигает 75–80%.

Разработка новых химических веществ – трудоемкий и дорогостоящий процесс. Например, для нахождения и синтеза всего лишь нескольких лекарственных препаратов, пригодных для промышленного производства, необходимо изготовить не менее 4000 разновидностей веществ. Для средств защиты растений данная цифра может достигать и 10000. В недалеком прошлом в США на каждый внедряемый в массовое производство химический продукт приходилось примерно 450 научно-исследовательских разработок, из которых отбиралось всего лишь 98 для опытного производства. После опытно-промышленных испытаний лишь не более 50% отобранных продуктов находили широкое практическое применение. Однако практическая значимость полученных таким сложным путем продуктов настолько велика, что затраты на исследования и разработку очень быстро окупаются.

Благодаря успешному взаимодействию химиков, физиков, математиков, биологов, инженеров и других специалистов появляются новые разработки, обеспечивающие в последнее десятилетие внушительный рост производства химической продукции, о чем свидетельствуют следующие цифры. Если общий выпуск продукции в мире за 10 лет (1950–1960) увеличился примерно в 3 раза, то объем химической продукции за этот же период возрос в 20 раз. За десятилетний период (1961– 1970гг.) средний годовой прирост промышленной продукции в мире составлял 6,7%, а химической – 9,7%. В 70-е годы прирост химической продукции, составляющий около 7%, обеспечил ее увеличение примерно вдвое. Предполагается, что при таких темпах роста к концу нынешнего столетия химическая промышленность займет первое место по выпуску продукции.

Химические технологии и связанное с ними промышленное производство охватывают все важнейшие сферы народного хозяйства, включающего различные отрасли экономики. Взаимодействие химических технологий и различных сфер деятельности людей условно представлено на рис. 6.1, где введены обозначения: А – химическая и текстильная промышленность, целлюлозно-бумажная и легкая промышленность, производство стекла и керамики, производство различных материалов, строительство, горное дело, металлургия; Б – машино- и приборостроение, электроника и электротехника, средства связи, военное дело, сельское и лесное хозяйство, пищевая промышленность, охрана окружающей среды, здравоохранение, домашнее хозяйство, средства информации; В – повышение производительности труда, экономия материалов, успехи в здравоохранении; Г – улучшение условий труда и быта, рационализация умственного труда; Д – здоровье, питание, одежда, отдых; Е – жилища, культура, воспитание, образование, охрана окружающей среды, оборона.

Приведем несколько примеров применения химических технологий. Для производства современных компьютеров нужны интегральные схемы, технология изготовления которых основана на использовании кремния. Однако в природе нет кремния в химически чистом виде. Зато в больших количествах есть диоксид кремния в виде песка. Химические технологии позволяют обычный песок превратить в элементный кремний. Еще один характерный пример. Автомобильный транспорт сжигает громадное количество топлива. Что нужно сделать, чтобы добиться минимального загрязнения атмосферы выхлопными газами? Частично такая проблема решается с помощью автомобильного каталитического конвертора выхлопных газов. Радикальное же ее решение обеспечивается применением химических технологий, а именно химическими манипуляциями над исходным сырьем – сырой нефтью, перерабатываемой в очищенные продукты, эффективно сгораемые в двигателях автомобилей.

Значительная часть населения земного шара прямо или косвенно связана с химическими технологиями. Так, к концу 80-х годов XX в. только в одной стране – США – в химической индустрии и родственных отраслях было занято более 1 млн. человек, в том числе свыше 150000 ученых и инженеров-технологов. В те годы в США продавали химической продукции примерно на 175–180 млрд. долл. в год.

Химические технологии и связанная с ними индустрия вынуждены реагировать на стремление общества сохранить окружающую среду. В зависимости от политической атмосферы такое стремление может колебаться от разумной осторожности до паники. В любом случае экономическое следствие – рост цен на продукцию, обусловленный затратами на достижение желаемой цели сохранения окружающей среды, на обеспечение безопасности рабочего персонала, на доказательства безвредности и эффективности новых продуктов и т. п. Разумеется, все эти затраты оплачивает потребитель и они существенно отражаются на конкурентоспособности выпускаемой продукции.

Представляют интерес некоторые цифры, касающиеся выпускаемой и потребляемой продукции. В начале 70-х годов XX в. средний горожанин использовал в повседневной жизни 300–500 разнообразных химических продуктов, из них около 60 – в виде текстильных изделий, примерно 200 – в быту, на рабочем месте и во время отдыха, примерно 50 медикаментов и столько же продуктов питания и средств приготовления пищи. Технология изготовления некоторых пищевых продуктов включает до 200 различных химических процессов.

Около десяти лет назад насчитывалось более 1 млн. разновидностей продукции, выпускаемой химической промышленностью. К тому времени общее число известных химических соединений составляло более 8 млн., в том числе примерно 60 тыс. неорганических соединений. Сегодня известно более 18 млн. химических соединений. Во всех лабораториях нашей планеты ежедневно синтезируется 200–250 новых химических соединений. Синтез новых веществ зависит от совершенства химических технологий и в значительной степени от эффективности управления химическими превращениями.

Похожие публикации