Обо всем на свете

Вращение молекул как целого. Различные типы молекулярных волчков. Вращательные спектры В данную группу входят две подгруппы

1. Энергетический слой
Новый энергетический слой зет Ахиллеса стал больше в диаметре, чем у предыдущей версии. По краям расположены металлические лезвия в форме косы. Они значительно добавляют веса, а периферическое расположение увеличивает центробежную силу вращения бея.
Слева и справа расположены уже знакомые всем небольшие синие крылышки, которые раскрываются во время боя, как у Волтраека В5 и служат блокиратором разбития. Но стоит учитывать, что этот блок лишь увеличивает сопротивление к разбитию, а не полностью его исключает.
Сверху и снизу симметрично расположены еще пара синих крыльев. С одной стороны, они незначительно увеличивают выносливость во время вращения. С другой стороны, они сглаживают контур, чтобы атакующим противникам было сложнее зацепиться и «снести крышу» Супер Зет Ахиллесу А5. К тому же любые выдвижные элементы амортизируют удары, что уменьшает отскок во время столкновений. Благодаря этому, бейблейд сложнее будет выбить с арены;

2. Силовой диск
Новый диск стал действительно новым. Его обозначили номером 00 (двойной ноль). Прежде нулевой диск был самым тяжелым из всех, но теперь у него появился конкурент по весу. Уже если удивлять новым бейблейдом, то удивлять во всем, решили в Takara Tomy;

3. Драйвер (наконечник)
Обновленный драйвер получил название Dimension (Dm). По сути — это видоизмененный драйвер Xtend прошлой версии Ахиллеса. Он так же имеет два базовых режима (атакующий и защитный) и так же меняет свою высоту. Однако изменился он внешне и механизм переключения режимов стал другой. Внутри находится черный стержень, на котором происходит вращение. В старой системе сверху было кольцо, которое надо было оттянуть и повернуть, установив нужный режим. Сейчас же появился третий элемент. Само кольцо стало зубчатым для удобства вращения и при повороте из него выходит небольшая втулка, в которой и прячется стержень;

4. В комплект входит также пусковой механизм влево-вправо.

Наверное, у каждого из нас в детстве была игрушка юла. До чего же интересно было наблюдать за её вращением! И очень хотелось понять, почему неподвижная юла не может стоять вертикально, а когда её запускаешь, она начинает вращаться и не падает, сохраняя устойчивость на одной опоре.

Хотя юла – всего лишь игрушка, она привлекла пристальное внимание физиков. Юла представляет собой один из видов тела, которое в физике называется волчком. Как игрушка, чаще всего она имеет конструкцию, состоящую из двух полуконусов, соединённых вместе, по центру которых проходит ось. Но волчок может иметь и другую форму. Например, шестерёнка часового механизма тоже является волчком, как и гироскоп - насаженный на стержень массивный диск. Простейший волчок состоит из диска, в центр которого вставлена ось.

Ничто не может заставить волчок сохранять вертикальное положение, когда он неподвижен. Но стоит только раскрутить его, как он будет прочно стоять на остром конце. И чем быстрее скорость его вращения, тем устойчивее его положение.

Почему не падает вращающийся волчок

Нажать на картинку

Согласно закону инерции, открытому Ньютоном, все тела, находящиеся в движении, стремятся сохранить направление движения и величину скорости. Соответственно, подчиняется этому закону и вращающийся волчок. Сила инерции препятствует падению волчка, пытаясь сохранить первоначальный характер движения. Конечно, сила тяжести пытается свалить волчок, но чем быстрее он вращается, тем труднее преодолеть силу инерции.

Прецессия волчка

Толкнём волчок, вращающийся против часовой стрелки в направлении, показанном на рисунке. Под воздействием приложенной силы он наклонится влево. Точка А при этом двигается вниз, а точка В вверх. Обе точки согласно закону инерции окажут сопротивление толчку, пытаясь вернуться в исходное положение. В результате возникнет прецессионная сила, направленная перпендикулярно направлению толчка. Волчок отвернёт влево под углом 90 о по отношению к приложенной к нему силе. Если вращение происходило бы по часовой стрелке, он отвернул бы вправо под таким же углом.

Если бы волчок не вращался, то под действием силы тяжести он сразу же упал бы на поверхность, на которой он находится. Но, вращаясь, он не падает, а аналогично другим вращающимся телам получает момент количества движения (угловой момент). Величина этого момента зависит от массы волчка и скорости вращения. Возникает вращающая сила, которая заставляет ось волчка при вращении сохранять угол наклона относительно вертикали.

Со временем скорость вращения волчка снижается, и его движение начинает замедляться. Верхняя его точка постепенно отклоняется от первоначального положения в стороны. Её движение проходит по расходящейся спирали. Это и есть прецессия оси волчка.

Эффект прецессии можно также наблюдать, если, не дожидаясь замедления его вращения, просто толкнуть волчок, т. е. приложить к нему внешнюю силу. Момент приложенной силы изменяет направление момента импульса оси волчка.

Экспериментально подтверждено, что скорость изменения момента импульса вращающегося тела прямо пропорциональна величине приложенного к телу момента силы .

Гироскоп

Нажать на картинку

Если попытаться толкнуть вращающийся волчок, он качнётся и снова примет вертикальное положение. Более того, если его подбросить, то его ось всё равно сохранит своё направление. Это свойство волчка используется в технике.

До того как человечество придумало гироскоп, оно применяло разные способы ориентации в пространстве. Это были отвес и уровень, в основу работы которых была положена гравитация. Позже изобрели компас, который использовал магнетизм Земли, и астролябию, принцип работы которой основан на расположении звёзд. Но в сложных условиях эти приборы не всегда могли работать.

Работа гироскопа, изобретённого в начале XIX века немецким астрономом и математиком Иоганном Боненбергером, не зависела от плохой погоды, тряски, качки или электромагнитных помех. Этот прибор представлял собой тяжёлый металлический диск, через центр которого проходила ось. Вся эта конструкция заключалась в кольцо. Но она имела один существенный недостаток – её работа быстро замедлялась из-за сил трения.

Во второй половине XIX века для разгона и поддержания работы гироскопа было предложено использовать электродвигатель.

В ХХ веке гироскоп заменил компас в самолётах, ракетах, подводных лодках.

В гирокомпасе вращающееся колесо (ротор) устанавливается в кардановом подвесе, представляющем собой универсальную шарнирную опору, в которой закреплённое тело может свободно вращаться одновременно в нескольких плоскостях. Причём направление оси вращения тела останется неизменным независимо от того, как меняется расположение самого подвеса. Такой подвес очень удобно использовать там, где есть качка. Ведь предмет, закреплённый в ней, будет сохранять вертикальное положение несмотря ни на что.

Ротор гироскопа сохраняет свое направление в пространстве. Но Земля вращается. И наблюдателю покажется, что за 24 часа ось ротора делает полный оборот. В гирокомпасе ротор с помощью груза удерживают в горизонтальном положении. Сила тяжести создаёт крутящий момент, и ось ротора всегда направлена строго на север.

Гироскоп стал важнейшим элементом навигационных систем самолетов и морских судов.

В авиации применяется прибор, который называется авиагоризонт. Это гироскопический прибор, с помощью которого определяют углы крена и тангажа.

На основе волчка созданы и гироскопические стабилизаторы. Быстро вращающийся диск препятствует изменению оси вращения, «гасит» качку на кораблях. Такие стабилизаторы используются также в вертолётах для стабилизации их равновесия по вертикали и горизонтали.

Не только волчок может сохранять устойчивое положение относительно оси вращения. Если тело имеет правильную геометрическую форму, при вращении оно также способно сохранять устойчивость.

«Родственники» волчка

У волчка есть «родственники». Это велосипед и винтовочная пуля. На первый взгляд они абсолютно разные. Что же их объединяет?

Каждое из колёс велосипеда можно рассматривать как волчок. Если колёса неподвижны, велосипед валится на бок. А если они катятся, то и он сохраняет равновесие.

А пуля, выпущенная из винтовки, также вертится в полёте, как и волчок. Она ведёт себя так, потому что в стволе винтовки сделаны винтовые нарезы. Проносясь по ним, пуля получает вращательное движение. И в воздухе она сохраняет то же положение, что и в стволе, острым концом вперёд. Точно так же вращаются и пушечные снаряды. В отличие от старых пушек, стрелявших ядрами, дальность полёта и точность попадания таких снарядов выше.

В-в в газовой фазе в длинноволновом ИК и микроволновом диапазонах, а также методом комбинац. рассеяния (КР). Т. наз. чисто вращательные спектры связаны с вращат. переходами между уровнями Е" вр и Е"" вр при фиксированных электронном и колебат. состояниях . Они характеризуются частотами v = (Е" вр - Е"" вр)/h в диапазоне 10 4 -10 6 МГц или волновыми числами= v/c, соотв. от единиц до сотен см -1 (h- , с - скорость света). Чисто вращат. спектры КР наблюдаются при облучении видимым или УФ-излучением с частотой v 0 ; соответствующие разности волновых чисел, отсчитываемые от линии рэлеевского рассеяния, имеют те же значения, что и волновые числа в чисто вращат. спектрах ИК и микроволнового диапазонов. При изменении электронного и колебат. состояний всегда меняются и вращат. состояния, что приводит к появлению т. наз. вращательной структуры электронных и колебат. спектров в УФ-, ИК-областях и в колебательно-вращат. спектрах КР.

Для приближенного описания вращат. движения можно принять модель жестко связанных точечных масс, т.е. , размеры к-рых ничтожно малы по сравнению с самой . Массой можно пренебречь. В классич. механике вращение жесткого тела характеризуется главными моментами инерции I А, I B , I C относительно трех взаимно перпендикулярных главных осей, пересекающихся в центре масс. Каждый момент инерции где m i -точечная масса, r i -ее расстояние от оси вращения.

Полный момент кол-ва движения G связан с проекциями момента на главные оси соотношением:

Энергия вращения Е вр, являющаяся кинетич. энергией (Т вр), в общем случае выражается через проекции полного момента кол-ва движения и главные моменты инерции соотношением:

Согласно квантовомех. представлениям, момент кол-ва движения может принимать только определенные дискретные значения. Условия квантования имеют вид:

где G z - проекция момента на нек-рую выделенную ось z; J = 0, 1, 2, 3, ... - вращат. квантовое число; К - квантовое число, принимающее при каждом J(2J + 1) значений: 0, ± 1, ±2, ±3, ... ±J.

Выражения для Е вр различны для четырех осн. типов : 1) линейных, напр. О-С-О, Н=СN, Н-СС-Н; частный случай - двухатомные , напр. N 2 , HC1; 2) типа сферич. волчка, напр. СС1 4 , SF 6 ; 3) типа симметричного волчка, напр. NH 3 , СН 3 С1, С 6 Н 6 ; 4) типа асимметричного волчка, напр. Н 2 О, СН 2 С1 2 . Рассмотрим соответствующие типы вращательных спектров.

Значение и применения. Вращательные спектры высоко индивидуальны, что позволяет по неск. линиям отождествлять конкретные (

Как у Вас еще нет такого волчка? Значит Вы многое упустили в детстве... Немедленно приобретайте! Голову заморочит, кому хочешь... Кручу, верчу, многое узнать хочу... например, о динамических свойствах этого своенравного переворачивающегося волчка. Посмотрите только на этих знаменитых физиков В. Паули и Н. Бора. Как Вы думаете, чем они увлечены? ...

Никто не знает, когда впервые был запущен китайский волчок, и кто его придумал. Но известно, что впервые необычными свойствами китайского волчка при вращении заинтересовался великий физик лорд Кельвин.

Позднее китайский волчок приобрел еще одно название "волчок Томсона" по имени ученого, занимавшегося изучением гироскопов. С тех пор такие волчки "крутят" во всем мире!

Китайский волчок - это шарик со срезанной верхушкой, на поверхности среза в центре расположена ножка-ось. Чтобы увидеть во вращении этого волчка что-то отличающее его от обычного волчка, нужно при его изготовлении соблюсти одно правило: центр масс волчка не должен совпадать с геометрическим центром шара-заготовки.

В устойчивом состоянии, т.е. в положении равновесия, китайский волчок подобен «Ваньке-встаньке». Центр тяжести расположен ниже центра кривизны его поверхности.

Без вращения волчок под действием силы тяжести устанавливается так, что ножка вытянута по вертикали. Волчок опирается на плоскость одной точкой своей сферической поверхности. Если его сильно раскрутить, то, вращаясь, он начинает наклоняться, переворачивается, а затем встает на ножку. Вращение при этом не прекращается. Правда, неправдоподобно? Но, факт!

Основные параметры волчка: О - центр масс волчка, h - расстояние от центра масс до точки опоры; K - центр кривизны волчка в точке опоры, r - радиус кривизны.

Если любой симметричный волчок привести во вращение вокруг его геометрической оси симметрии и установить на плоскость в вертикальном положении, то это вращение в зависимости от формы волчка и угловой скорости вращения может быть устойчивым или неустойчивым.

Поведение волчка при вращении будет зависеть от отношения момента инерции относительно геометрической оси симметрии к моменту инерции относительно главной центральной оси, перпендикулярной оси симметрии, а также от отношения расстояния от центра масс до точки опоры (h) к радиусу кривизны шляпки волчка (r).

При сильном раскручивании волчка происходит некоторое небольшое непроизвольное отклонение его от вертикального положения. При дальнейшем вращении геометрическая ось симметрии волчка занимает все более наклонное положение относительно вертикальной оси вращения.

На поверхности волчка не существует постоянной точки опоры. Смещающаяся точка опоры на его поверхности, постоянно приближаясь к срезу шарика, описывает на поверхности, на которой вращается волчок, кривую линию.

Центр масс волчка, который находится ниже геометрического центра шара, из которого он изготовлен, смещается при этом с оси вращения и начинает вращаться вокруг нее.

По мере вращения ось вращения и геометрическая ось волчка все более смещаются относительно друг друга. Трение в точке опоры создает вращающий момент, определяемый расхождением осей симметрии и вращения и направленный к низу. Это ведет к еще большему наклону волчка на бок. При большой угловой скорости вращения центр масс поднимается, а сам волчок все больше «заваливается» на бок.

После перехода волчка по инерции через горизонтальное положение вращающий момент за счет силы тяжести меняет свое направление и пытается перевернуть волчок.

Как только волчок коснется краешком ножки поверхности, на которой происходит вращение, точка опоры переходит на краешек ножки, и китайский волчок, как самый обыкновенный, начинает процессировать вокруг вертикальной оси, описывая коническую поверхность. За счет действия момента силы трения, направленного к вертикали, волчок, в конце концов, совместит свою ось с вертикалью, и мы увидим вертикальное вращение волчка «вверх ногами», т.е. на ножке.

Со временем из-за подъема центра масс и потерь на трение угловая скорость вращения волчка уменьшается.

Интересно, что если, например, запустить его по часовой стрелке, то после переворачивания направление вращения его относительно собственной геометрической оси симметрии сохраняется неизменным(если наблюдать за вращением только с одной стороны - например, сверху).

Но если проанализировать вращение волчка, наблюдая за ним все время вращения только с одной стороны, например, со стороны ножки, то можно заметить, что после опрокидывания на ножку, вращение волчка вокруг оси симметрии будет противоположно исходному. Это было замечено на опытах, когда вращение волчка происходило на поверхности копировальной бумаги. Вычерченная в результате вращения линия на поверхности волчка показывает, где, в какой момент произошло изменение направления вращения

Где же, в какой момент происходит эта неуловимая для глаза смена направления вращения?

Когда геометрическая ось волчка при вращении переходит в горизонтальное положение, в этот момент вращение вокруг геометрической оси симметрии волчка отсутствует! Здесь то и меняется неощущаемое визуально направление вращения.

ЗАГАДКИ ОБЫКНОВЕННОГО ВОЛЧКА

Волчок - это незамысловатая с виду игрушка, которой развлекались дети всех времен и народов. Но она обладает целым рядом удивительных и на первый взгляд необъяснимых свойств!

Ж.Б.Шарден. Мальчик с волчком. 18 век.

Кроме обычного волчка существует ещё его усложнённый вариант - юла, которая имеет механизм для раскручивания.

"Поведение волчка в высшей степени удивительно ! Если он не вертится, то сразу опрокидывается , и его не удержать в равновесии на кончике. Но это совершенно другой предмет, когда он кружится : он не только не падает, но и проявляет сопротивление , когда его толкают, и даже принимает все более и более вертикальное положение." - так говорил о волчке известный английский ученый Дж. Перри.

Японские волчки

Волчки были привезены в Японию из Китая и Кореи около 1200 лет назад. Волчок составляет одну из любимейших игр в Японии." Некоторые сделаны очень искусно: они спускаются с горы, танцуют на канате, разлетаются в куски, которые продолжают вертеться."
В настоящее время в Японии насчитывается около тысячи разных видов волчков, формы которых могут быть самыми различными - от обыкновенных вертящихся волчков до изделий сложной, причудливой формы. Их размеры колеблются от 0,5 мм до 90 см.

Похожие публикации