Обо всем на свете

Способы регуляции метаболической активности в клетке. Обмен веществ и энергии. Организация химических реакций в метаболические пути

Московская медицинская академия имени И.М. Сеченова

Кафедра общей химии

Реферативная работа №1

Студентки 1 курса 9 группы

Факультета ВСО заочного отделения

Ромашковой Екатерины Дмитриевны

Москва 2010

Механизмы регуляции метаболических процессов

А. Основные механизмы регуляции метаболических процессов

Активность всех путей обмена веществ постоянно регулируется, что обеспечивает соответствие синтеза и деградации метаболитов физиологическим потребностям организма. В этом разделе рассматриваются механизмы такой регуляции. Более детально вопросы регуляции клеточного метаболизма представлены на.Поток метаболитов в обмене веществ определяется прежде всего активностью ферментов .Для воздействия на тот или иной путь достаточно регулировать активность фермента, катализирующего наиболее медленную стадию. Такие ферменты, называемые ключевыми ферментами , имеются в большинстве метаболических путей. Активность ключевого фермента регулируется на трех независимых уровнях,

Контроль транскрипции. Контроль за биосинтезом фермента (1) осуществляется на генетическом уровне. Прежде всего речь идет о синтезе соответствующей мРНК (mRNA), а также о транскрипции кодирующего фермент гена, т.е. о регуляции транскрипции .В этом процессе принимают участие регуляторные белки (RP) (факторы транскрипции), действие которых направлено непосредственно на ДНК. К тому же в генах имеются специальные регуляторные участки - промоторы - и участки связывания регуляторных белков (регуляторные элементы). На эффективность действия этих белков влияют метаболиты или гормоны. Если этот механизм усиливает синтез фермента, говорят об индукции , если же снижает или подавляет - о репрессии . Процессы индукции и репрессии осуществляются лишь в определенный отрезок времени.

Взаимопревращение. Значительно быстрее, чем контроль транскрипции, действует взаимопревращение ключевых ферментов (2). В этом случае фермент присутствует в клетке в неактивной форме. При метаболической потребности по сигналу извне и при посредничестве вторичного мессенджера активирующий фермент (E 1) переводит ключевой фермент в каталитически активную форму. Если потребность в этом пути обмена веществ отпадает, инактивирующий фермент (E 2) снова переводит ключевой фермент в неактивную форму. Процесс взаимопревращения в большинстве случаев состоит в АТФ-зависимом фосфорилировании ферментных белков протеинкиназой и соответственно дефосфорилировании фосфатазой .В большинстве случаев более активна фосфорилированная форма фермента, однако встречаются также и противоположные случаи.

Модуляция лигандами. Важным параметром, контролирующим протекание метаболического пути, является потребность в первом реагенте (здесь это метаболит А). Доступность метаболита А возрастает с повышением активности метаболического пути (3), в котором образуется А, и падает с повышением активности других путей (4), в которых А расходуется. Доступность А может быть ограничена в связи с его транспортом в другие отделы клетки.

Часто лимитирующим фактором является также доступность кофермента (5). Если кофермент регенерируется по второму независимому пути, этот путь может лимитировать скорость основной реакции. Таким образом, например, гликолиз и цитратный цикл регулируются доступностью НАД + .Так как НАД + регенерируется в дыхательной цепи, последняя регулирует катаболизм глюкозы и жирных кислот.Наконец, активность ключевого фермента может регулироваться лигандом (субстратом, конечным продуктом реакции, коферментом, другим эффектором) как аллостерическим эффектором путем связывания его не в самом активном центре, а в другом месте фермента, и вследствие этого изменением ферментативной активности.Ингибирование ключевого фермента часто вызывается конечными продуктами реакции соответствующей метаболической цепи (ингибирование по типу обратной связи ) или метаболитом, участвующим в другом пути. Стимулировать активацию фермента может также первый реагент реакционной цепи.

Гормональная регуляция метаболизма

Катализируемые ферментами активация и соответственно инактивация ключевых ферментов промежуточного метаболизма называются взаимопревращениями . Такие процессы находятся под разнообразным контролем, и том числе и гормональным. В этом разделе рассмотрены процессы взаимопревращений, осуществляющие регуляцию метаболизма гликогена в печени.

А. Гормональная регуляция расщепления гликогена

Гликоген служит в организме резервом углеводов, из которого в печени и мышцах путем расщепления быстро создается глюкозофосфат.Скорость синтеза гликогена определяется активностью гликоген-синтазы (на схеме внизу справа), в то время как расщепление катализируется гликоген-фосфорилазой (на схеме внизу слева). Оба фермента действуют на поверхности нерастворимых частиц гликогена, где они в зависимости от состояния обмена веществ могут находиться в активной или неактивной форме. При голодании или в стрессовых ситуациях (борьба, бег) возрастает потребность организма в глюкозе. В таких случаях выделяются гормоны адреналин и глюкагон . Они активируют расщепление и ингибируют синтез гликогена. Адреналин действует в мышцах и печени, а глюкагон - только в печени.

Оба гормона связываются с рецепторами на плазматической мембране (1) и активируют при посредничестве G-белков аденилатциклазу (2), которая катализирует синтез 3",5"-цикло-AMФ (цАМФ) из АТФ (АТР). Зеркально противоположным является действие на этот «вторичный мессенджер » фосфодиэстеразы цАМФ (3), гидролизующей цАМФ до АМФ (AMP). В печени диэстераза индуцируется инсулином, который поэтому не препятствует воздействию двух других гормонов (не показано). цАМФ связывается и тем самым активирует протеинкиназу А (4), которая действует по двум направлениям: с одной стороны, с помощью фосфорилирования с участием АТФ в качестве кофермента она переводит в неактивную D-форму гликоген-синтазу и вследствие этого останавливает синтез гликогена (5); с другой, активирует - также путем фосфорилирования - другую протеинкиназу, киназу фосфорилазы (8). Активная киназа фосфорилазы фосфорилирует неактивную b-форму гликоген-фосфорилазы , превращая ее в активную а-форму (7). Это приводит к высвобождению из гликогена глюкозо-1-фосфата (8), который после превращения в глюкозо-6-фосфат с участием фосфоглюкомутазы включается в гликолиз (9). В печени дополнительно образуется свободная глюкоза, которая поступает в кровь (10).

По мере уменьшения уровня цАМФ активируются фосфопротеинфосфатазы (11), которые дефосфорилируют различные фосфопротеины описанного каскада и тем самым останавливают расщепление гликогена и инициируют его синтез. Эти процессы протекают в течение нескольких секунд, так что метаболизм гликогена быстро адаптируется к измененным условиям.

Б. Взаимопревращение гликоген-фосфорилазы

Структурные изменения, которые сопровождают взаимопревращения гликоген-фосфорилазы, были установлены рентгеноструктурным анализом. Фермент представляет собой димер с симметрией второго порядка. Каждая субъединица имеет активный центр, который расположен внутри белка и в b-форме плохо доступен для субстрата. Взаимопревращение начинается с фосфорилирования серинового остатка (Ser-14) вблизи N-конца каждой из субъединиц. С фосфатными группами связываются остатки аргинина соседних субъединиц. Связывание инициирует конформационные перестройки, которые существенно увеличивают сродство фермента к аллостерическому активатору АМФ. Действие АМФ и влияние конформационных изменений на активные центры приводят к возникновению более активной а-формы. После удаления фосфатных остатков фермент самопроизвольно принимает исходную b-конформацию.

Гормональная регуляция метаболизма жирных кислот

метаболизм фермент гормональная регуляция

Адреналин и глюкагон активируют внутриклеточную липазу. Действие этих гормонов опосредовано аденилатциклазным каскадом реакций, начиная с активации аденилатциклазы и заканчивая фосфорилированием липазы, которая при этом переходит в активную форму и расщепляет эфирные связи в ТАГ. Глицерол как растворимое в плазме вещество транспортируется в печень, где используется в реакциях глюконеогенеза. Жирные кислоты транспортируются кровью в виде комплексов с сывороточными альбуминами в разные органы и ткани, где включаются в процесс окисления.

Гормональная регуляция метаболизма белков обеспечивает обеспечивает динамическое равновесие их синтеза и распада.

· Анаболизм белков контролируется гормонами аденогипофиза (соматотропин ), поджелудочной железы (инсулин ), мужских половых желез (адроген ). Усиление анаболической фазы метаболизма белков при избытке этих гормонов выражается в усиленном росте и увеличении массы тела. Недостаток анаболитических гормонов вызывает задержку роста у детей.

· Катаболизм белков регулируется гормонами щитовидной железы (тироксин и трийодтиронон ), коркового (клюкокортикоиды ) и мозгового (адреналин ) вещества надпочечников. Избыток этих гормонов усиливает распад белков в тканях, что сопровождается истощением и отрицательным азотистым балансом. Недостаток гормонов, например, щитовидной железы сопровождается ожирением.

Таким образом, образование в печени гликогена из молочной кислоты, по- видимому, обеспечивает важную связь между метаболизмом в мышцах и в печени. При участии печени гликоген из мышц превращается в доступный сахар крови, а этот сахар в свою очередь превращается в мышечный гликоген. Следовательно, в организме существует замкнутый цикл превращений молекул глюкозы... Было показано, что адреналин ускоряет эти реакции в направлении от гликогена мышц к гликогену печени... В то же время инсулин ускоряет реакции в направлении от глюкозы крови к мышечному гликогену.

К. Ф. Кори и Г. Т. Кори, из статьи в журнале Biological Chemistry , 1929

15. ПРИНЦИПЫ РЕГУЛЯЦИИ МЕТАБОЛИЗМА

Регуляция реакций метаболизма составляет основное содержание исследований в биохимии, и это одна из наиболее замечательных способностей живой клетки. Среди тысяч ферментативных реакций, происходящих в клетке, возможно, нет ни одной, которая в том или ином виде не подвергалась бы регуляции. Хотя в учебниках принято (да это и полезно) подразделять метаболический процесс на отдельные «пути», выполняющие определенные функции в жизнеобеспечении клетки, в самой клетке подобного разделения не существует. Более того, каждый путь, обсуждаемый в этой книге, неразрывно связан со всеми другими клеточными процессами, что показано с помощью многомерной сети реакций (рис. 15-1). Например, в гл. 14 мы обсуждали три возможных пути превращения глюкозо-6-фосфата в клетках печени: участие в гликолизе для накопления АТР, участие в пентозофосфатном пути для получения NADPH и пентозофосфатов, а также гидролиз до глюкозы и фосфата для пополнения запасов глюкозы в крови. Но на самом деле существует ряд других возможных путей превращения глюкозо-6-фосфата; он может, например, использоваться для синтеза других сахаров, таких как глюкозамин, галактоза, галактозамин, фукоза и нейраминовая кислота, участвовать в гликозилировании белков или частично разлагаться, поставляя ацетил-СоА для синтеза жирных кислот и стеринов. Например, бактерия Escherichia coli использует глюкозу для синтеза углеродных скелетов абсолютно всех своих молекул. Когда клетка направляет глюкозо-6-фосфат по одному из путей, это оказывает влияние на все остальные пути, в которых это вещество является предшественником или интермедиатом. Любое изменение в распределении глюкозо-6-фосфата в одном метаболическом пути прямо или косвенно влияет на его участие во всех других путях.

Подобные изменения в распределении метаболитов часто случаются в жизни клетки. Луи Пастер первым описал значительное увеличение потребления глюкозы (более чем в 10 раз) культурой дрожжей при переходе от аэробных условий к анаэробным. Это явление, называемое эффектом Пастера, не сопровождается какими-либо заметными колебаниями концентрации АТР или какого-то другого вещества из сотен интермедиатов и продуктов метаболизма глюкозы. Похожие изменения наблюдаются в клетках скелетных мышц бегуна на спринтерской дистанции. Клетки обладают потрясающей способностью одновременно и экономно осуществлять все эти взаимосвязанные метаболические превращения и получать каждый продукт в строго определенном количестве и в строго определенный момент времени при изменяющихся условиях внешней среды.

Рис. 15-1. Трехмерная сеть реакций метаболизма. Типичная эукариотическая клетка способна к синтезу около 30 000 различных белков, катализирующих тысячи реакций, в которых образуются сотни метаболитов — многие задействованы в нескольких метаболических путях. Иллюстрация взята из базы данных KEGG PATHWAY (Kyoto Encyclopedia of Genes and Genomes www.genome.ad.jp/kegg/pathway/map/map0ll00.html). Каждую область можно рассмотреть более подробно, вплоть до уровня отдельных ферментов и интермедиатов.

В этой главе мы проиллюстрируем основные принципы регуляции метаболизма на примере метаболизма глюкозы. Мы начнем с рассмотрения общей роли регуляции в достижении метаболического гомеостаза и познакомимся с теорией контроля метаболизма, на основе которой можно проводить количественный анализ сложных метаболических процессов. Далее мы остановимся на особенностях регуляции отдельных ферментов метаболизма глюкозы и рассмотрим каталитическую активность ферментов, участвующих в гликолизе и глюконеогенезе, описанных в гл. 14. Обсудим также каталитические и регуляторные свойства ферментов, участвующих в синтезе и разрушении гликогена, одного из наиболее изученных примеров регуляции метаболизма. Выбрав для иллюстрации принципов метаболической регуляции метаболизм углеводов, мы искусственно отделили его от метаболизма жирных кислот. На самом деле эти два процесса в клетке очень тесно связаны, как мы увидим в гл. 23.

15.1. Регуляция метаболических путей

Реакции катаболизма в метаболизме гликогена обеспечивают энергию, необходимую для преодоления «сил» энтропии, а реакции анаболизма приводят к образованию исходных молекул для биосинтеза и запасанию метаболической энергии. Эти процессы настолько важны для жизнедеятельности клеток, что в ходе эволюции возникли очень сложные регуляторные механизмы, обеспечивающие передвижение метаболитов по правильным путям, в нужном направлении и с необходимой скоростью с тем, чтобы полностью удовлетворять текущие нужды клетки или организма; при изменении внешних условий корректируется скорость превращений метаболитов в соответствующих метаболических путях.

Внешние же условия действительно меняются, иногда довольно сильно. При большой физической нагрузке потребность мышц в АТР может вырасти за считанные секунды в сотни раз. Доступность кислорода может снизиться из-за гипоксии (ухудшения доставки кислорода к тканям) или ишемии (уменьшения кровотока к тканям). Соотношение углеводов, жиров и белков в пище различается, и богатые энергией питательные вещества поступают в организм нерегулярно, в результате чего между приемами пищи и при голодании возникает необходимость коррекции происходящих метаболических процессов. Огромные количества энергии и молекул требуются для биосинтеза, например, при заживлении ран.

Клетки и организмы существуют в динамическом стационарном состоянии

Богатые энергией молекулы, такие как глюкоза, поглощаются клеткой, а отходы метаболизма, например, СO 2 , покидают ее, но при этом масса и состав клетки, отдельного органа или взрослого животного практически не меняются во времени; клетки и организмы существуют в динамическом стационарном состоянии, но никак не в равновесии с окружающей средой. Субстрат для каждой реакции метаболического пути поступает от предыдущей реакции с такой же скоростью, с какой он далее превращается в продукт. Другими словами, хотя скорость (v ) потока вещества (или просто — поток ) на данной стадии метаболизма может быть высокой и сильно изменяться, концентрация субстрата остается постоянной. Для двухстадийной реакции

при v 1 = v 2 концентрация постоянна. Например, изменение скорости поступления глюкозы из различных источников в кровь компенсируется изменением v 2 всасывания глюкозы из крови в ткани, таким образом, концентрация глюкозы в крови поддерживается около 5 мМ. Это гомеостаз на молекулярном уровне. У человека нарушение механизмов гомеостаза часто бывает причиной заболеваний. Например, при сахарном диабете регуляция концентрации глюкозы в крови нарушена из-за недостатка инсулина или нечувствительности к нему, что и влечет за собой пагубные последствия для здоровья.

Когда внешние воздействия не ограничиваются просто временным влиянием или когда клетка одного типа превращается в клетку другого типа, регулирование состава клетки и метаболизма может оказаться более значительным и потребовать заметных и продолжительных изменений в распределении энергии и исходных веществ для синтеза, чтобы аккуратно осуществить этот переход. Представьте себе, например, процесс дифференцировки стволовой клетки костного мозга в эритроцит. Исходная клетка содержит ядро, митохондрии и мало или вовсе не содержит гемоглобина, в то время как в полностью дифференцированном эритроците гемоглобина огромное количество, но ни ядра, ни митохондрий нет. Состав этой клетки постоянно изменялся в ответ на приходящие извне сигналы, и соответственно менялся и метаболизм. Дифференцировка клеток требует точной регуляции концентраций клеточных белков.

В ходе эволюции возник замечательный набор регуляторных механизмов, позволяющих поддерживать гомеостаз на уровне молекул, клеток и целых организмов. Значение регуляции метаболизма для организма отражается в относительном количестве генов, кодирующих элементы регуляторного аппарата: у человека около 4000 генов (около 12% всех генов) кодируют регуляторные белки, в том числе разнообразные рецепторы, регуляторы экспрессии генов и около 500 различных протеинкиназ! Регуляторные механизмы действуют в разном временном диапазоне (от секунд до суток) и отличаются по чувствительности к изменениям внешней среды. Во многих случаях эти механизмы перекрываются: один и тот же фермент может быть объектом регуляции в нескольких регуляторных механизмах.

Регулируется не только количество ферментов, но и их каталитическая активность

Интенсивность ферментативного процесса может регулироваться как путем изменения количества ферментов, так и путем модуляции каталитической активности присутствующих молекул фермента. Подобные превращения происходят во временном диапазоне от нескольких миллисекунд до нескольких часов и служат ответом на внутриклеточный или внешний сигнал. Очень быстрые аллостерические изменения ферментативной активности обычно инициируются на месте путем изменения локальной концентрации небольших молекул субстрата данного метаболического пути (в реакциях гликолиза — глюкозы), продукта пути (АТР при гликолизе) или ключевого метаболита или кофактора (такого, как NADH ), что связано с метаболической способностью клетки. Вторичные мессенджеры (такие, как циклический АМР и Са 2+), образующиеся внутри клеток в ответ на внеклеточные сигналы (гормоны, цитокины и т. п.), также опосредуют аллостерическую регуляцию, но несколько медленнее влияя на механизмы передачи сигнала (см. гл. 12).

Внеклеточные сигналы (рис. 15-2, Ф) могут быть гормональными (инсулин или адреналин), нейрональными (ацетилхолин) или передаваться с помощью факторов роста или цитокинов. Количество данного фермента в клетке определяется соотношением между скоростями его синтеза и деградации. Скорость синтеза регулируется путем активации (в ответ на какой-то внешний сигнал) фактора транскрипции (рис. 15-2, (D ; подробности см. в гл. 28). Факторы транскрипции — это ядерные белки, которые после активации связываются со специфическими участками ДНК (респонсивными элементами) вблизи области промотора гена (точки начала транскрипции) и активируют или подавляют транскрипцию данного гена, что приводит к увеличению или уменьшению продукции соответствующего белка. Активация фактора транскрипции часто происходит в результате его связывания со специфическим лигандом, а иногда бывает вызвана его фосфорилированием или дефосфорилированием. Каждый ген контролируется одним или несколькими респонсивными элементами, которые распознаются специфическими факторами транскрипции. Некоторые гены содержат несколько респонсивных элементов и, следовательно, контролируются несколькими различными факторами транскрипции, реагирующими на несколько различных сигналов. Группы генов, кодирующих белки, действие которых взаимосвязано, как в случае ферментов гликолиза или глюконеогенеза, часто содержат респонсивные элементы с одинаковой последовательностью, так что один и тот же сигнал, действующий через определенный фактор транскрипции, включает или выключает всю группу генов одновременно. В разд. 15.3 обсуждается регуляция метаболизма углеводов под действием специфических факторов транскрипции.

Устойчивость молекул мРНК к рибонуклеа- зам (рис. 15-2, (D ) может быть различной, так что количество мРНК данного вида в клетке — функция скоростей ее синтеза и деградации (гл. 26). Наконец, скорость трансляции мРНК на рибосомах (рис. 15-2, (4)) также регулируется и зависит от нескольких факторов, описанных подробно в гл. 27.

Рис. 15-2. Факторы, влияющие на активность ферментов. Общая активность фермента может меняться из-за изменения числа молекул данного (количества) фермента в клетке, его эффективной активности в определенном клеточном отделе ((1)-(6)) или модуляции активности существующих молекул фермента как подробно описано в тексте. Активность конкретного фермента определяется сочетанием этих факторов.

Обратите внимание, что увеличение продукции мРНК в n раз не всегда означает n -кратное увеличение синтеза соответствующего белка.

Образовавшаяся молекула белка существует ограниченное время, а именно, от нескольких минут до многих дней (табл. 15-1). Скорость деградации ферментов (рис. 15-2, (5)) также различна и определяется внутриклеточными условиями. Некоторые белки подвергаются деградации в протеасомах (см. гл. 28) в результате ковалентного связывания с убиквитином (вспомните белок циклин; см. рис. 12-46). Быстрый оборот (синтез с последующей деградацией) сопряжен с большими энергетическими затратами, однако белки с меньшим периодом полужизни (время, за которое остается половина первоначального количества вещества) могут достичь нового стационарного состояния по своему содержанию быстрее белков, время полужизни которых велико, и выигрыш от такой быстрой реакции должен уравновешивать или быть больше энергетических затрат клетки.

Таблица 15-1. Примерное время полужизни белков в органах млекопитающих

Еще один фактор, влияющий на эффективную активность фермента, — это доступность его субстрата (рис. 15-2, (6)). Гексокиназа из мышц не может действовать на глюкозу, пока этот сахар не поступит из крови в клетки мышц, а скорость проникновения глюкозы в клетки зависит от молекул-переносчиков (см. табл. 11-3) в плазматической мембране. Внутри клетки некоторые ферменты и ферментные системы содержатся в различных ограниченных мембраной компартментах; доставка субстратов в эти отделы может быть лимитирующим фактором для фермента.

Благодаря наличию этих нескольких механизмов регуляции ферментативной активности клетки способны существенно изменять набор ферментов в ответ на изменение условий метаболизма. У позвоночных наиболее приспосабливаемым органом является печень; например, замена богатой углеводами пищи на пищу с высоким содержанием липидов влияет на транскрипцию сотен генов и, следовательно, синтез сотен белков. Подобные глобальные изменения в экспрессии генов можно оценить на количественном уровне с помощью ДНК-микрочипов (см. рис. 9-22), позволяющих анализировать весь набор мРНК данного типа клеток или органов (транскриптом), или с помощью двумерного гель-электрофореза (см. рис. 3-21) — метода изучения всех белков данного типа клеток или конкретного органа (протеом). Оба этих метода очень полезны при исследованиях регуляции метаболизма. Изменения протеома часто влекут за собой изменения всего ансамбля низкомолекулярных метаболитов — метаболома.

После того как в результате действия регуляторных механизмов, контролирующих синтез и деградацию белка, в клетке образовалось определенное количество каждого фермента, активность этих ферментов и далее подвержена регуляции: путем изменения концентрации субстратов; путем воздействия аллостерических эффекторов; путем ковалентной модификации; или путем связывания регуляторных белков. Все эти процессы могут изменять активность отдельных молекул фермента (рис. 15-2, (7)-(10)).

Все ферменты чувствительны к концентрации своих субстратов (рис. 15-2, (7)). Вспомните, что в простейшем случае (в условиях кинетики Михаэлиса-Ментен) начальная скорость реакции равна половине максимальной скорости при концентрации субстрата, равной значению К м (т. е. при полунасыщении фермента субстратом). При уменьшении концентрации субстрата скорость реакции также уменьшается, а при «К м скорость реакции линейным образом зависит от . Это важно помнить, поскольку внутриклеточная концентрация субстрата часто близка к К м или ниже этого значения. Например, активность гексокиназы зависит от концентрации глюкозы, а внутриклеточная концентрация глюкозы изменяется с концентрацией глюкозы в крови. Как мы увидим далее, различным формам (изоформам) гексокиназы соответствуют разные К м, и, следовательно, присутствие различных изоформ гексокиназы зависит от внутриклеточной концентрации глюкозы, что имеет определенное физиологическое значение.

Пример 15-1. Активность переносчика глюкозы

Если для переносчика глюкозы в печени (GLU Т2) Кt (эквивалент К м) = 40 мМ, определите изменение скорости поступления (потока) глюкозы в гепатоциты при повышении концентрации глюкозы в крови от 3 до 10 мМ.

Решение. Для определения начальной скорости поступления глюкозы используем уравнение 11-1 (т. 1, с. 555).

При 3 мМ глюкозы

V 0 = V m ах (3 мМ)/(40 мМ + 3 мМ) = V m ах (3 мМ/43 мМ) = 0,07 V m ах При 10 мМ глюкозы

V 0 = V m ах (10 мМ)/(40 мМ + 10 мМ) = V m ах (10 мМ/50 мМ) = 0,20 V m ах

Таким образом, если концентрация глюкозы в крови увеличилась от 3 до 10 мМ, то это значит, что скорость потока глюкозы в гепатоциты повысилась почти в 3 раза (0,20/0,07).

Ферментативная активность может увеличиваться или уменьшаться под действием аллостерических эффекторов (рис. 15-2, (8); см. также рис. 6-34). Под влиянием аллостерических эффекторов кинетика реакции обычно вместо гиперболической становится S -образной, или наоборот (например, см. рис. 15-14, б). В наиболее крутой части S -образной кривой небольшие изменения концентрации субстрата или аллостерического эффектора могут значительно влиять на скорость реакции. Как мы обсуждали в гл. 5 (с. 239, т. 1), для описания поведения аллостерических ферментов пользуются коэффициентом кооперативности Хилла, причем большое значение этого коэффициента означает более высокую кооперативность. Для аллостерического фермента с коэффициентом Хилла, равным 4, трехкратное увеличение концентрации субстрата приводит к увеличению скорости реакции от 0,1 Vm ах до 0,9 Vm ах, тогда как для фермента, не обладающего свойством кооперативности (коэффициент Хилла 1; см. табл. 15-2), для такого же изменения ферментативной активности требуется повышение концентрации субстрата в 81 раз!

Ковалентные модификации уже существующего фермента или другого белка (рис. 15-2, (9)) происходят за секунды-минуты с момента поступления сигнала, как правило, внеклеточного. Самая распространенная модификация — это фосфорилирование-дефосфорилирование (рис. 15-3); до половины всех белков в эукариотической клетке при определенных условиях подвергаются фосфорилированию. Фосфорилирование может изменить электростатические свойства активного центра фермента, сместить ингибирующий участок белка подальше от активного центра, повлиять на взаимодействие данного белка с другими молекулами или вызвать конформационные изменения, приводящие к изменениям Vm ах и К м. Для осуществления регуляции необходимо, чтобы после ковалентной модификации клетка могла вернуть белок к его исходному состоянию. Семейство фосфопротеинфосфатаз, некоторые члены которого сами находятся под контролем, катализируют дефосфорилирование белков, которые были фосфорилированы протеинкиназами.

Таблица 15-2. Соотношение между коэффициентом Хилла и влиянием концентрации субстрата на скорость реакции для аллостерических ферментов

Рис. 15-3. Фосфорилирование-дефосфорилирование белка. Протеинкиназы переносят фосфорильную группу от АТР на остатки Ser, Thr или Туr в белке. Протеинфосфатазы удаляют фосфорильную группу в виде P i .

Наконец, регуляция многих ферментов достигается путем связывания с регуляторными белками (рис. 15-2, (10)). Например, сАМР- зависимая протеинкиназа (РКА; см. рис. 12-6) остается неактивной до тех пор, пока в результате связывания сАМР каталитические и регуляторные субъединицы фермента разделены.

Рассмотренные механизмы влияния на скорость определенной реакции метаболического пути не исключают друг друга. Достаточно часто один и тот же фермент подвергается регуляции на уровне транскрипции, а также путем аллостерических механизмов и ковалентного связывания. Сочетание этих механизмов обеспечивает быструю и эффективную регуляцию в ответ на самые разнообразные изменения в клетке и поступающие сигналы.

Для последующего обсуждения полезно рассмотреть изменения ферментативной активности при выполнении двух различных, но, тем не менее, взаимодополняющих функций. Термином метаболическая регуляция будем обозначать процесс, направленный на поддержание гомеостаза на молекулярном уровне, т. е. поддержание определенных клеточных параметров (таких как концентрации метаболитов) даже при изменении потока метаболитов в данном метаболическом пути. Термином метаболический контроль будем называть процессы, ведущие к изменению результата метаболического пути во времени в ответ на некоторые внешние сигналы или изменение условий. Следует сказать, однако, что четкую границу между этими двумя понятиями провести не всегда легко.

Обычно в клетке регулируются реакции, далекие от состояния равновесия

На некоторых стадиях метаболического пути реакции приближаются к состоянию равновесия (рис. 15-4). Общий поток метаболитов в таких реакциях определяется небольшой разницей между скоростями прямой и обратной реакций, которые при приближении к состоянию равновесия имеют близкие значения. Небольшие изменения концентрации субстрата или продукта реакции могут сильно изменить общую скорость процесса и даже его направление. Идентифицировать эти почти равновесные реакции в клетке мы можем, если будем сравнивать величины отношения действующих масс Q с константой равновесия реакции К" eq . Вспомните, что для реакции А + В —> С + D Q = [С]/[А][В]. Считается, что, когда Q и К" eq различаются лишь на 1-2 порядка, реакция близка к равновесию. Например, это наблюдается для шести из 10 реакций гликолиза (табл. 15-3).

Рис. 15-4. Равновесные и неравновесные стадии метаболизма. В клетке стадии (2) и (3) данного пути почти равновесны; скорости их прямых реакций лишь немного превышают скорости обратных реакций, так что общая скорость (10) довольно низкая, а изменение свободной энергии ∆G′ для каждой из этих стадий близко к нулю. Повышение внутриклеточной концентрации метаболитов С или D может изменить направление этих стадий. Стадия (1) в клетке далека от равновесия — скорость прямой реакции намного превосходит скорость обратной реакции. Общая скорость стадии (1) (10) много больше скорости обратной реакции (0,01) и в стационарном состоянии равна скоростям стадий (2) и (3). Стадия (1) характеризуется большим отрицательным значением ∆G′.

Многие реакции в клетке, однако, далеки от равновесия. Например, для реакции гликолиза, катализируемой фосфофруктокиназой-1 (РРК-1), К" eq ≈ 1000, а для типичной клетки в стационарном состоянии Q = [фруктозо-1,6-бисфосфат][АD Р]/ [фруктозо-6-фосфат][АТР]) ≈ 0,1 (табл. 15-3). Именно благодаря тому, что эта реакция так далека от равновесия, во внутриклеточных условиях данный процесс экзергонический и протекает в прямом направлении. Эта реакция далека от равновесия, поскольку при обычных внутриклеточных концентрациях субстрата, продукта и эффектора скорость превращения фруктозо-6- фосфата в фруктозо-1,6-бисфосфат ограничена активностью PFK -1, что регулируется числом молекул PFK -1 и действием эффекторов. Таким образом, скорость прямого процесса совпадает со скоростью общего потока интермедиатов гликолиза в других реакциях данного пути, а скорость обратного потока в реакции с участием PFK -1 практически равна нулю.

Таблица 15-3. Константы равновесия, отношения действующих масс и изменения свободной энергии ферментативных реакций при метаболизме углеводов

К" eq

Отношение действующих масс, Q

Печень Сердце

Реакция in vivo близка к равновесию?*

∆G′ (кДж/моль)

∆G′ в сердце (кДж/моль)

Гексокиназа

PFK-1

9 . 10 -2

3 . 10 - 2

Альдолаза

Триозофосфатизомераза

Глицеральдегид-3-фосфатдегидрогеназа +

фосфоглицераткиназа

Фосфоглицератмутаза

Пируваткиназа

Фосфоглюкоизомераза

Пируваткарбоксилаза + ФЕП-карбооксикиназа

Глюкозо-6-фосфатаза

* Для простоты считают, что все реакции, для которых ∆G′ <6, близки к равновесию.

Клетка не может допустить, чтобы реакции с большими значениями констант равновесия приближались к равновесию. Если при обычных клеточных концентрациях фруктозо-6-фосфата, АТР и ADP (несколько миллимолей) катализируемая PFK -1 реакция могла бы достигать равновесия, то концентрация фруктозо-1,6-бисфосфата оказалась бы в молярном диапазоне, что привело бы к гибели клетки из-за высокого осмотического давления.

Рассмотрим другой пример. Если в клетке реакция АТР —> ADP + Рi могла бы приблизиться к равновесию, для этой реакции изменение свободной энергии ∆G′ —> 0 (∆Gp ; см. пример 13-2, с. 31); в результате АТР утратил бы свой высокий потенциал переносчика фосфатных групп, который так необходим клетке. Поэтому очень важно, чтобы ферменты, катализирующие разложение АТР и другие экзергонические реакции в клетке, были подвержены регуляции, т. е. при изменении метаболических процессов в результате внешних воздействий реакции с участием этих ферментов корректировались таким образом, чтобы концентрация АТР оставалась гораздо выше равновесного уровня. При подобных изменениях метаболизма происходит корректировка активностей ферментов во всех взаимосвязанных метаболических путях, что не позволяет критическим стадиям достичь равновесия. Поэтому неудивительно, что многие ферменты (такие как PFK -1), катализирующие реакции с большим отрицательным изменением свободной энергии, тонко регулируются множеством различных способов. Эта регуляция происходит настолько сложным путем, что при изучении свойств только одного фермента метаболического пути нельзя определить, насколько большое влияние оказывает этот фермент на ход процесса в целом; для этого надо привлечь теорию контроля метаболизма, к которой мы обратимся в разд. 15.2.

Адениновые нуклеотиды играют особую роль в регуляции метаболизма

Возможно, вторая по важности задача клетки (после защиты от повреждений ДНК) — это поддержание постоянных запасов АТР. Многие АТР- зависимые ферменты имеют К м между 0,1 и 1 мМ, а нормальная концентрация АТР в клетке составляет 5 мМ. Если концентрация АТР была бы значительно ниже, эти ферменты не могли бы достичь насыщения своим субстратом (АТР), в результате чего снизилась бы скорость сотен реакций, происходящих с участием АТР (рис. 15-5). Клетка, вероятно, не смогла бы пережить такого кинетического воздействия на столь большое число реакций.

Кроме того, уменьшение концентрации АТР имеет важные термодинамические последствия. Поскольку при выполнении работы в клетке АТР превращается в ADP или АМР, соотношение / оказывает глубокое влияние на течение всех реакций, в которых задействованы эти кофакторы. Это же относится и к другим кофакторам— NADH /NAD + и NADPH /NADP + .

Рис. 15-5. Влияние концентрации АТР на начальную скорость реакции, катализируемой типичным АТР- зависимым ферментом. На основании этих экспериментальных данных для АТР К м ≈ 5 мМ. В тканях животных концентрация [АТР] ≈ 5 мМ.

Например, рассмотрим реакцию, катализируемую гексокиназой:

Заметьте, что это выражение верно только в том случае, когда исходные вещества и продукты реакции находятся в равновесных концентрациях, при которых ∆G′ = 0. При любых других концентрациях ∆G′ ≠ 0. Вспомните (гл. 13), что отношение концентраций продуктов реакции к концентрациям субстратов (отношение действующих масс Q определяет величину и знак ∆G′ и, следовательно, движущую силу (∆G′) реакции:

Поскольку изменение этой движущей силы влияет на все реакции с участием АТР, в процессе эволюции организмы выработали регуляторные механизмы, ответственные за поддержание соотношения /.

Концентрация АМР гораздо чувствительнее к энергетическому состоянию клетки, чем концентрация АТР. Обычно в клетках концентрация АТР (5-10 мМ) гораздо выше, чем концентрация АМР (<0,1 мМ). При расходовании АТР, например при мышечном сокращении, АМР образуется в результате двустадийного процесса. Сначала при гидролизе АТР образуется ADP , а затем в результате действия аденилаткиназы — АМР:

2ADP АМР + АТР

При уменьшении концентрации АТР на 10% относительное увеличение концентрации АМР более значительно, чем для ADP (табл. 15-4). Поэтому неудивительно, что многие регуляторные процессы связаны именно с концентрацией АМР. Важную роль как медиатор регуляции играет AMP -зависимая протеинкиназа, которая при повышении концентрации АМР начинает фосфорилировать ключевые белки, регулируя тем самым их активность. Увеличение [АМР] может быть связано с недостаточным поступлением питательных веществ или с большой физической нагрузкой. Действие АМР-зависимой протеинкиназы (не путайте с сАМР-зависимой протеинкиназой, см. разд. 15.5) усиливает транспорт глюкозы, активирует гликолиз и окисление жирных кислот, но в то же время подавляет такие энергозатратные процессы, как синтез жирных кислот, холестерина и белков (рис. 15-6). В гл. 23 мы подробнее обсудим этот фермент и механизм его действия в указанных процессах.

Таблица 15-4. Относительные изменения концентраций АТР и АМР при расходовании АТР или функциональных групп

Рис. 15-6. Роль AMP -зависимой протеинкиназы (АМРК) в метаболизме жиров и углеводов. Во время физических нагрузок АМРК активируется в ответ на увеличение концентрации АМР или уменьшение концентрации АТР сигналами от симпатической нервной системы (СНС) или гормонов жировой ткани (лептина и адипонектина, подробнее см. гл. 23). Активированная АМРК фосфорилирует ключевые белки и тем самым регулирует метаболизм во многих тканях, подавляя такие энергозатратные процессы, как синтез гликогена, жирных кислот и холестерина; направляет обмен веществ вне печени на использование жирных кислот в качестве топливных молекул; а в печени запускает глюконеогенез для обеспечения мозга глюкозой. В гипоталамусе АМРК стимулирует пищевое поведение так, чтобы организм получил больше питательных веществ.

Наряду с АТР в клетке в необходимых концентрациях должны присутствовать сотни интермедиатов метаболизма. Например, интермедиаты гликолиза дигидроксиацетонфосфат и 3-фосфоглицерат служат предшественниками триацилглицеринов и серина соответственно. При необходимости скорость гликолиза должна корректироваться таким образом, чтобы обеспечить необходимое количество этих веществ без снижения уровня образования АТР. Эта же закономерность справедлива для других важных кофакторов, таких как NADH и NADPH : изменение отношения их действующих масс (т. е. отношение концентрации восстановленной формы кофактора к концентрации его окисленной формы) оказывает очень сильное влияние на метаболизм.

Конечно, на эволюционное развитие регуляторных механизмов влияли также приоритеты, возникающие в жизнедеятельности целого организма. В головном мозге млекопитающих запасы энергии практически отсутствуют, поэтому деятельность мозга полностью зависит от поступления глюкозы по кровотоку. Когда уровень глюкозы крови уменьшается в 2 раза по сравнению с нормой (4-5 мМ), происходит нарушение мозговой деятельности, а 5-кратное снижение уровня глюкозы крови приводит к состоянию комы и к смерти. Поддерживать уровень глюкозы крови в норме помогают гормоны инсулин и глюкагон, выделяющиеся при повышенном и пониженном содержании глюкозы соответственно; эти гормоны запускают серию метаболических реакций, направленных на нормализацию уровня глюкозы.

Кроме того, в ходе эволюции должно было осуществляться и другое селективное воздействие, приведшее к отбору регуляторных механизмов, направленных на решение вполне определенных задач.

1. Обеспечение максимальной эффективности использования энергии путем предотвращения одновременного протекания реакций противоположно направленных метаболических путей (например, гликолиза и глюконеогенеза).

2. Распределение метаболитов между альтернативными метаболическими путями (такими как гликолиз и пентозофосфатный путь).

3. Выбор наиболее подходящего источника энергии для решения текущих задач организма (глюкоза, жирные кислоты, гликоген или аминокислоты).

4. Остановка путей биосинтеза при накоплении его продуктов.

В последующих главах представлено множество примеров регуляторных механизмов каждого типа.

Краткое содержание раздела 15.1. Регуляция метаболических путей

■ В клетке с активным метаболизмом, находящейся в стационарном состоянии, интермедиаты метаболизма образуются и расходуются с одинаковой скоростью. Если в результате каких-либо воздействий скорость образования или расходования метаболита изменяется, в клетке происходит компенсаторное изменение активностей ферментов, приводящее к восстановлению стационарного состояния.

■ Клетки регулируют свой метаболизм с помощью различных механизмов во временном диапазоне от миллисекунд до нескольких суток, изменяя активность уже существующих ферментов или количество синтезируемых молекул специфического фермента.

■ Различные сигналы могут активировать или инактивировать факторы транскрипции, которые регулируют экспрессию генов в ядре клетки. Изменения в транскриптоме приводят к изменениям в протеоме и, в итоге, в метаболоме клетки или ткани.

■ В многостадийных процессах, таких как гликолиз, некоторые реакции в стационарном состоянии близки к равновесию; скорости этих реакций контролируются концентрацией субстрата и уменьшаются и увеличиваются при ее изменении. Другие реакции далеки от равновесия; обычно они контролируют потоки веществ целиком в данном метаболическом пути.

■ Регуляторные механизмы направлены на поддержание в клетках практически постоянного уровня ключевых метаболитов, таких как АТР и NADH , или глюкозы крови; при изменении потребностей организма используются запасы гликогена.

Химические реакции, протекающие в клетках, катализируются ферментами. Неудивительно поэтому, что большинство способов регуляции обмена веществ основано на двух ведущих процессах: изменении концентрации ферментов и их активности. Эти способы регуляции метаболизма характерны для всех клеток и осуществляются с помощью разнообразных механизмов в ответ на сигналы разного рода. Кроме этого, клетки владеют дополнительными способами регуляции метаболизма, многообразие которых удобно рассмотреть в соответствии с несколькими уровнями организации.

Регуляция на уровне транскрипции . Этот тип регуляции рассмотрен в главе 3 на нескольких примерах положительного и отрицательного контроля транскрипции прокариотических генов. Данный механизм характерен, в первую очередь, для регуляции количества мРНК, определяющих структуру ферментов, а кроме этого - белков-гистонов, рибосомальных, транспортных белков. Группа последних, не обладая каталитической активностью, также принимает большое участие в изменении скорости соответствующих процессов (формирование хромосом и рибосом, транспорт веществ через мембраны), а значит, и метаболизма в целом.

В регуляции транскрипции генов участвуют регуляторные белки, структура которых определяется специфическими генами (регулято-рами), их комплексы с лигандами (например, лактозой при индукции транскрипции или триптофаном при репрессии), комплексы сАМР-САР, гуанозинтетрафосфат, а в некоторых случаях таким действием обладают белки - продукты экспрессии собственных генов. Особое значение в данных процессах имеют такие важные сигнальные молекулы, как сАМР и гуанозинтетрафосфат. Можно сказать, что сАМР сигнализирует клетке об энергетическом голоде-отсутствии глюкозы. В ответ на это увеличивается частота транскрипции структурных генов, отвечающих за катаболизм других источников углерода и энергии (активация катаболитных оперонов, катаболитная репрессия, глава 3). Гуанозинтетрафосфат (гуанозин-5’-дифосфат-3’-дифосфат) является сигналом аминокислотного голодания. Этот нуклеотид связывается с РНК-полимеразой и изменяет ее сродство к промоторам различных генов. В реультате экспрессия генов, ответственных за биосинтез углеводов, липидов, нуклеотидов и др. уменьшается, а экспрессия других генов, в частности детерминирующих процессы протеолиза белков, наоборот, повышается.

Процесс транскрипции чаще регулируется с помощью изменения частоты событий инициации транскрипции, но, кроме этого, могут регулироваться скорость элонгации транскрипции и частота ее преждевременной терминации. На события элонгации и терминации первостепенное влияние оказывает конформационное состояние ДНК или самой мРНК (наличие «стоп-сигналов», шпилечных структур).


Аллостерическая регуляция активности ферментов . Этот тип регуляции является одним из самых быстрых и гибких, он осуществляется с помощью молекул-эффекторов, взаимодействующих с аллостерическим центром фермента (глава 6). Аллостерической регуляции, как и оперонной, подвержены ключевые ферменты тех или иных метаболических путей. Таким образом, скорость всего биосинтетического или катаболического процесса зависит от одной, реже нескольких реакций, катализируемых ключевыми ферментами.

Особое значение регуляция имеет для процессов биосинтеза протеиногенных аминокислот. Поскольку их 20, и каждая в суммарном клеточном белке у разных организмов представлена в определенном отношении, требуется очень четкая регуляция, координирующая процессы синтеза отдельных аминокислот. Такой контроль исключает перепроизводство аминокислот, и выделение их из клетки возможно лишь у микроорганизмов с нарушенной регуляцией.

Пример регуляции биосинтеза аминокислот семейства аспартата у энтеробактерий представлен на рис. 19.3. Четыре аминокислоты имеют общий предшественник - аспарагиновую кислоту. Ее превращение в аспартилфосфат у бактерий E.coli катализируют три изоферментные формы аспартокиназы, каждая из которых испытывает репрессию и/или ингибирование со стороны разных конечных продуктов данного разветвленного метаболического пути. Аналогичным способом регулируется синтез гомосериндегидрогеназы.

Обращает на себя внимание существование механизма обратной связи , который заключается в том, что конечные продукты метаболических процессов регулируют уровень синтеза и/или активность ферментов, катализирующих первые этапы образования этих метаболитов.

Аллостерическими эффекторами могут выступать самые различные вещества: субстраты и конечные продукты метаболических путей, иногда - промежуточные метаболиты; в катаболических процессах-нуклеозиддифосфаты и нуклеозидтрифосфаты, а также переносчики восстановительных эквивалентов; в каскадных реакциях - сАМР и сGMP, которые регулируют активность ферментов (например, протеинкиназ), участвующих в ковалентной модификации белков; ионы металлов и множество иных соединений. Примеры аллостерической регуляции ферментов приведены в главе 6 и др. разделах.

Ковалентная модификация ферментов . Этот тип регуляции активности ферментов иначе называют взаимопревращениями ферментов, поскольку суть данного процесса состоит в превращении активных форм ферментов в неактивные и наоборот. Особенности и примеры ковалентной модификации описаны в главе 6. Эти процессы находятся под разнообразным контролем, в том числе и гормональным. Классическим примером взаимопревращений ферментов является регуляция метаболизма гликогена в печени.

Скорость синтеза этого резервного полисахарида находится под контролем гликоген-синтазы, а расщепление катализируется гликогенфосфорилазой. Оба фермента могут пребывать в активной и неактивной формах. При голодании или в стрессовых ситуациях в кровь выделяются гормоны - адреналин и глюкагон, которые связываются с рецепторами на плазматических мембранах клеток и активируют при посредничестве G-белков фермент аденилатциклазу (катализирует синтез сАМР). сАМР связывается с протеинкиназой А и активирует ее, что приводит к фосфорилированию гликоген-синтазы и переводу ее в неактивную форму. Гликоген перестает синтезироваться. Кроме этого, протеинкиназа А в ходе каскадных реакций вызывает фосфорилирование гликоген-фосфорилазы, которая в результате активируется и начинает расщеплять гликоген. На процессы синтеза и распада гликогена действует также другой гормон-инсулин. В этом примере сигнальными молекулами служат гормоны, а посредниками - G-белок и сАМР. Взаимопревращения ферментов осуществляются в ходе фосфорилирования-дефосфорилирования.

Гормональная регуляция. Этот тип регуляции метаболизма предусматривает участие гормонов - сигнальных веществ, образующихся в клетках эндокринных желез, поэтому гормональная регуляция свойственна только высшим организмам. Выше описано действие гормонов на процесс обмена гликогена, в котором регулируется активность ферментов на уровне ковалентной модификации. Кроме этого, гормоны способны оказывать воздействие на скорость транскрипции (оперонная регуляция).

Из специализированных клеток, где происходит синтез гормонов, последние поступают в кровь и переносятся к клеткам-мишеням, имеющим рецепторы, способным связывать гормоны и тем самым воспринимать гормональный сигнал. Связывание гормона рецептором запускает каскад реакций с участием молекул-посредников, которые завершаются клеточным ответом. Липофильные гормоны связываются с внутриклеточным рецептором (белок) и регулируют транскрипцию определенных генов. Гидрофильные гормоны действуют на клетки-мишени за счет связывания с рецепторами на плазматической мембране.

Кроме гормонов, аналогичным действием обладают другие сигнальные вещества: медиаторы, нейромедиаторы, ростовые факторы. Четкой границы, позволяющей отличать гормоны от перечисленных веществ, нет. Медиаторами называют сигнальные вещества, которые продуцируются не железами внутренней секреции, а различными типами клеток. К медиаторам относят гистамин, простагландины, которые обладают гормоноподобным действием.

Нейромедиаторами считают сигнальные вещества, продуцируемые клетками центральной нервной системы.

Изменение концентрации метаболитов . Важным условием, обеспечивающим высокую скорость того или иного метаболического пути, является концентрация субстратов. Она может зависеть от интенсивности протекания других процессов, в которых также расходуются эти субстраты (конкуренция), или от скорости транспорта данных веществ через мембраны (плазматическую или органелл). В частности, у эукариотических клеток появляется возможность регулировать метаболизм, перераспределяя метаболиты по отдельным компартментам.

Кроме этого, скорость метаболических процессов определяется концентрацией кофакторов. Например, гликолиз и ЦТК регулируются доступностью ADP (глава 10, 11) на уровне изменения активности ключевых аллостерических ферментов.

Посттранскрипционная и посттрансляционная модификация макромолекул . Эти процессы также описаны в соответствующих разделах (глава 3). Модификация и/или процессинг первичных РНК-транскриптов осуществляются с разной скоростью, от чего зависит концентрация зрелых молекул РНК, способных транслироваться, а значит, и интенсивность белкового синтеза. В свою очередь, пептиды, прежде чем превратиться в зрелый белок, также должны модифицироваться, и если это касается ферментов, то речь идет об их ковалентной модификации.

Целью любого биотехнологического производства является получение максимально возможного количества целевого продукта с единицы объема установки при минимально возможных затратах. На практике существует два основных пути решения этих задач, которые заключаются с одной стороны в создании новых штаммов микроорганизмов, обладающих повышенной продукционной способностью, т.е. способностью к синтезу того или иного целевого продукта, а с другой стороны в создании оптимальных условий для протекания в клетках интересующего нас метаболитического процесса.

Решение этих задач в той или иной степени связано с изменением регуляторных процессов в клетке, поэтому в настоящем разделе мы рассмотрим некоторые механизмы регуляции биохимической активности бактериальной клетки.

В нормально функционирующей живой клетке одномоментно протекает множество катализируемых ферментами химических реакций, приводящих к образованию огромного количества разнообразных соединений. В норме обмен веществ в клетке (метаболизм ) осуществляется по принципам строжайшей экономии энергии и вещества, что обеспечивается сложнейшей системой регуляции обмена веществ.

Все процессы клеточного метаболизма можно условно разделить на две группы.

1. Процессы, в которых происходит разложение сложных веществ до более

простых с получением энергии называются катаболитическими катаболитами .

2. Процессы, в которых происходит синтез сложных веществ из простых с потреблением энергии называются анаболитическими , а промежуточные и конечные продукты – анаболитами .

Между катаболитическими и анаболитическими процессами в клетке существует тесная взаимосвязь. Катаболитические процессы служат источником энергии и “строительного материала” для анаболитических процессов, а продукты анаболизма могут служить субстратом для катаболитичких процессов (питательные вещества) или выполнять функции катализаторов (белки-ферменты).

Самый простой способ регуляции любого метаболического пути основывается на доступности субстрата. Действительно, в соответствии с законом действия масс, снижение количества субстрата-реагента (его концентрации в среде) приводит к снижению скорости протекания процесса (реакции) через данный метаболический путь. С другой стороны, повышение концентрации субстрата приводит к стимулированию этого метаболического пути. Поэтому, независимо от каких-то иных факторов, наличие (доступность) субстрата является важнейшим механизмом интенсификации любого метаболического процесса. Иногда эффективным средством повышения выхода целевого продукта является увеличение концентрации в клетке какого-либо определенного предшественника. Однако, в отличие от химических процессов, в биотехнологии данный путь имеет свои ограничения, т.к. высокие концентрации субстратов (больше 3-5%), например глюкозы или сахарозы, обычно резко тормозят рост микроорганизмов, что используется, например, для консервирования ягод и фруктов. Связано это, прежде всего с осмотическим эффектом, который вызывается большой разностью в концентрации этих веществ внутри клеток и в окружающей среде.

Однако в клетках имеется на много порядков более эффективный механизм контроля метаболитических процессов, основанный на регуляции ферментативного аппарата клетки. Такая регуляция может осуществляться по крайней мере двумя путями. Один из них очень быстрый (реализующийся в течение секунд или минут) заключается в изменении каталитической активности уже имеющихся молекул фермента. Второй, более медленный (реализуется в течение многих минут), состоит в изменении скоростей синтеза (количества) ферментов. В обоих механизмах используется единый принцип управления системами – принцип обратной связи.

Поскольку все процессы протекающие в клетке требуют участия специфических белковых катализаторов – ферментов, то общее количество ферментов в клетках может варьироваться от нескольких десятков до нескольких сотен, а процентная доля их по отношению к другим клеточным белкам будет достаточно большой (до нескольких процентов даже для одного фермента).

Однако энергетических (АТФ) и сырьевых ресурсов клетки (аминокислот) не хватает для одновременного синтеза всех необходимых ферментов. Поэтому постоянно синтезируются только те ферменты, которые поддерживают основные клеточные функции (например ферменты гликолиза, ЦТК). Такие ферменты называют конститутивными. Другие ферменты, адаптивные или индуцибельные, синтезируются только в ответ на появление каких то внешних факторов или веществ – индукторов, которые являются субстратами (питательными веществами) или их аналогами.

Уровень синтеза таких ферментов регулируется двумя механизмами – индукцией и репрессией .

Под индукцией понимают относительное увеличение синтеза одного фермента или группы ферментов, участвующее в одной и той же последова-тельности реакций, например в разложении какого-то сложного вещества до более простых. Ферменты, синтез которых регулируется таким образом, называют адаптивными или индуцированными (индуцибельными ), а субстраты, вызывающие их синтез - индукторами . Под влиянием индукторов количество адаптив­ных ферментов может возрастать в сотни раз. Так, для E.coliуста­новлено, что у культуры, выросшей на среде с глюкозой, обнаруживает лишь следы β-галактозидазы, осуществляющей реакцию расщепления лактозы до α-галактозы и D-глюкозы. При перенесении культуры на среду с лактозой, уже через несколько минут, начинается активный синтез β-галактозидазы и у адаптированной культуры до 3% от содержания белка приходится на этот фермент.

Для индуцируемых ферментов установлено, что:

а) фермент появляется во всех клетках одновременно и это нельзя объяснить мутациями;

б) индуцированный фермент целиком синтезируется в клетке из аминокислот или, как говорят, образуется de novo (изначально).

в) фермент синтезируется до тех пор, пока в среде есть индуктор. Через индукцию регулируется синтез ферментов, участвующих в катаболических процессах, т.е. индуцируемые ферменты необходимы для пог­лощения клеткой субстратов и включения их в обмен.

При промышленном получении ферментов, часто великолепными индукторами являются неутилизируемые структурные аналоги субстратов. Например, для β-галактозидазы таким веществом служит изопропил-β – D-тио-галактопиранозид (ИПТГ) неметаболизируемый аналог лактозы. Это позволяет увеличить выход фермента, который при этом не расходуется в ферментативной реакции и облегчить его очистку т.к. ИПТГ берется в количестве значительно меньшем, чем лактоза и в культуральной жидкости нет продуктов ее распада.

Вторым механизмом регуляции синтеза ферментов является репрес­сия , когда наблюдается относительное уменьшение синтеза фермента или группы ферментов, участвующих в одной и той же последователь­ности реакций, В зависимости от природы репрессоров различают реп­рессию конечным продуктом и репрессию катаболитами . Репрессия конечным продуктом наблюдается только для ферментов, осуществлявших анаболические реакции. При наличии в клетке конечного продукта ана­болического пути снижается скорость синтеза всех ферментов, участ­вующих в его образовании. Этот процесс позволяет экономить клеточ­ный белок, останавливая синтез тех ферментов, которые в данный мо­мент не требуются клетке.

Репрессия катаболитами характерна для реакций разложения сложных органических веществ микроорганизмами. Этот механизм позволяет клетке использовать более доступный субстрат, обеспечивавший высо­кую скорость роста культуры. Предпочтение отдается тем субстратам, разложение которых включает меньшее число стадий: микроорганизмы предпочитают простые сахара сложным, аминокислоты - пептидам и т.д. Одним из примеров катаболитной репрессии является “глюкозный эф­фект" - явление, наблюдаемое при выращи-вании микроорганизмов на средах, содержащих наряду с глюкозой другие источники углерода. Глюкоза, как наиболее легко усвояемый субстрат, метаболизируется в клетке и продукты ее разложения тормозят синтез ферментов, участвующих в усвоении более сложных субстратов до тех пор, пока не будет использована вся глюкоза.

Регуляция обмена веществ микробной клетки может происходить также путем изменения ферментативной активности имеющихся ферментов. Это явление наблюдается преимущественно в анаболитических процессах. Наиболее изученным механизмом является ингибирование активности ферментов конечным продуктом (ретроингибирование), когда активность фермента, стоящего в начале многоступенчатого превращения субстрата тормозится конечным метаболитом.

Впервые о наличии такого регуляторного механизма было сообщено в 1953 г. При изучении биосинтеза триптофана клетками E.coli. Заключительный этап биосинтеза данной ароматической аминокислоты состоит из нескольких, катализируемых индивидуальными ферментами стадий. Было обнаружено, что у одного из мутантов E. coli с нарушенным биосинтезом триптофана добавление данной аминокислоты (являющейся конечным продуктом этого биосинтетического пути) резко тормозит накопление одного из предшественников – индол глицерофосфата в клетках. Уже тогда было высказано предположение, что триптофан ингибирует активность какого-то фермента, катализирующего образование индол глицерофосфата. Несколько позднее было четко установлено, что таким чувствительным к триптофану ферментом является антранилатсинтетаза, которая катализирует более раннюю реакцию триптофанового пути – образование антраниловой кислоты из хоризмовой кислоты и глутамина. Этот факт был экспериментально обоснован в опыте, когда добавление триптофана в клеточные экстракты E. coli, содержащие фермент антранилатсинтетазу и его субстраты (хоризмат и глутамин), приводило к резкому ингибированию образования антранилата. Более того, было однозначно продемонстрировано, что активность антранилатсинтетазы подавляется только триптофаном и никакие другие метаболиты клетки подобного действия не оказывают.

Благодаря этому явлению у микроорганизмов предотвращается перепроизводство низкомолекулярных промежуточных продуктов обмена, таких, как аминокислоты, пуриновые и пиримидиновые нуклеотиды. Как правило, субстрат ингибируемого фермента резко отличается от конечного продукта - ингибитора и это обстоятельство позволяет считать, что конечный продукт соединяется не с активным центром фермента, а со специальным регуляторным или аллостерическим (от греч. «аллос» – другой, «стерос» – пространственный), центром. Присоединение конечного продукта к аллостерическому центру фермента сопровождается утратой нормальной каталитической активности вследствии конформационных изменений структуры белковой молекулы.

По сравнению с индукцией и репрессией ретроингибирование это инструмент быстрого и точного регулирования метаболитических процессов.

Ретроингибирование является крайне нежелательным явлением при промышленном получении тех или иных интересующих человека клеточных метаболитов, т.к. препятствует их накоплению в высоких концентрациях, что требует использования установок большего объема и усложняет процесс их выделения и очистки. А это в свою очередь увеличивает себестоимость продукции. Существует несколько подходов, позволяющих снять или значительно уменьшить эффект ретроингибирования. Один из них состоит в том, что целевой продукт (ингибитор), удаляют. Например, если он является эндометаболитом, то создаются условия для его ухода из клетки в культуральную жидкость, например за счет повышения проницаемости клеточных оболочек. Если целевой продукт является экзометаболитом (аминокислоты, антибиотики), то его удаляют из культуральной жидкости, например, переводя в нерастворимое состояние (осадок). Второй подход состоит в том, что на стадии синтеза продукта в культуральную жидкость добавляют вещество-промежуточный метаболит, синтез которого блокируется конечным продуктом (см. синтез триптофана). Недостатком этого подхода является то, что такой предшественник не всегда может быть получен дешево и в больших количествах. На практике, если возможно, обычно применяют оба подхода.

Другие подходы связаны с использованием методов мутагенеза-селекции и генной инженерии. Например, при мутационном изменении аллостерического центра (центра взаимодействия с ингибитором) чувствительность к ингибитору утрачивается и фермент сохраняет свою активность при высоких концентрациях конечного продукта, что позволяет создать более высокопродуктивные штаммы микроорганизмов-продуцентов. Более сложный вариант данного подхода реализуется при микробиологическом получении лизина (см. синтез лизина).

В регуляции метаболических путей участвуют механизмы трех типов. Первый из них, наиболее быстро реагирующий на любое изменение ситуации, связан с действием аллостерических ферментов (рис. 13-15), каталитическая активность которых может меняться под влиянием особых веществ, оказывающих стимулирующее или тормозящее действие (их называют эффекторами или модуляторами; разд. 9.18).

Как правило, аллостерические ферменты занимают место в начале или поблизости от начала данной мультиферментной последовательности и катализируют ту ее стадию, которая лимитирует скорость всего процесса в целом; обычно роль такой стадии играет практически необратимая реакция.

Рис. 13-15. Регуляция катаболического пути по типу обратной связи, т. е. за счет ингибирования аллостерического фермента конечным продуктом данного процесса. Буквами J, К, L и т. д. обозначены промежуточные продукты данного метаболического пути, а буквами Е1, Е2, Е3 и т. д. ферменты, катализирующие отдельные стадии. Первая стадия катализируется аллостерическим ферментом (ЕД который ингибируется конечным продуктом данной последовательности реакций. Аллостерическое ингибирование показано прерывистой красной стрелкой, которая соединяет ингибирующий метаболит с реакцией, катализируемой аллостерическим ферментом. Регулируемая стадия (катализируемая ферментом EJ в условиях клетки обычно представляет собой практически необратимую реакцию.

В катаболических процессах, сопровождающихся синтезом АТР из ADP, в роли аллостерического ингибитора одной из ранних стадий катаболизма часто выступает именно этот конечный продукт-АТР. Аллостерическим ингибитором одной из ранних стадий анаболизма нередко служит конечный продукт биосинтеза, например какая-нибудь аминокислота (разд. 9.18). Активность некоторых аллостерических ферментов стимулируется специфическими положительными модуляторами. Аллостерический фермент, регулирующий одну из катаболических последовательностей реакций, может, например, подчиняться стимулирующему влиянию положительных модуляторов-ADP или АМР и ингибирующему действию отрицательного модулятора-АТР. Известны также случаи, когда аллостерический фермент какого-нибудь метаболического пути специфическим образом реагирует на промежуточные или конечные продукты других метаболических путей. Благодаря этому оказывается возможной координация скорости действия различных ферментных систем.

Второй тип механизмов, регулирующих метаболизм у высших организмов, - это гормональная регуляция (рис. 13-16). Гормонами называют особые химические вещества (химические «посредники»), вырабатываемые различными эндокринными железами и выделяемые непосредственно в кровь; они переносятся кровью к другим тканям или органам и здесь стимулируют или тормозят определенные виды метаболической активности. Гормон адреналин, например, секретируется мозговым веществом надпочечника и переносится кровью в печень, где он стимулирует распад гликогена до глюкозы, что вызывает повышение уровня сахара в крови. Кроме того, адреналин стимулирует распад гликогена в скелетных мышцах; этот процесс приводит к образованию лактата и к запасанию энергии в форме АТР. Адреналин вызывает эти эффекты, присоединяясь к особым рецепторным участкам на поверхности мышечных клеток или клеток печени.

Связывание адреналина служит сигналом; этот сигнал передается во внутренние отделы клетки и вызывает здесь ковалентную модификацию, под влиянием которой гликогенфосфорилаза (первый фермент в системе, катализирующей превращение гликогена в глюкозу и другие продукты; разд. 9.22) переходит из менее активной формы в более активную (рис. 13-16).

Третий тип механизмов, регулирующих метаболизм, связан с изменением концентрации данного фермента в клетке. Концентрация всякого фермента в любой данный момент определяется соотношением скоростей его синтеза и распада. Скорость синтеза некоторых ферментов при определенных условиях резко возрастает; соответственно увеличивается и концентрация данного фермента в клетке. Если, например, животное получает рацион, богатый углеводами, но бедный белком, то в печени у него оказывается крайне низким содержание ферментов, катализирующих в обычных условиях распад аминокислот до ацетил-СоА. Поскольку при таком рационе эти ферменты практически не нужны, они и не вырабатываются в больших количествах. Стоит, однако, перевести животное на рацион, богатый белком, и уже через сутки в его печени заметно повысится содержание ферментов, которые потребуются теперь для расщепления перевариваемых аминокислот.

Рис. 13-16. Гормональная регуляция ферментативной реакции. В результате присоединения гормона адреналина к специфическим рецепторам, находящимся на поверхности клеток печени, образуется при участии связанного с мембраной фермента (аденилатциклазы) циклический аденилат. Последний функционирует как аллостерический активатор, или внутриклеточный посредник, под действием которого гликогенфосфорилаза переходит из неактивной формы в активную, что влечет за собой ускорение превращения гликогена печени в глюкозу крови. Подробно этот метаболический путь описан в гл. 25.

Рис. 13-17. Индукция ферментов. Высокая внутриклеточная концентрация субстрата А может стимулировать биосинтез ферментов Е1, Е2 и Е3. Содержание этих ферментов в клетке возрастает, и тем самым создается возможность для ускорения тех реакций, в результате которых избыток субстрата А удаляется. Избыток субстрата А служит, следовательно, для клеточного ядра сигналом, вынуждающим его «включить» гены, контролирующие образование ферментов El, Е2 и Е3. Включение генов означает синтез соответствующей матричной РНК; она поступает в рибосомы, и вследствие этого в них осуществляется синтез ферментов Е1, Е2 и Е3.

Клетки печени, следовательно, обладают способностью включать или выключать биосинтез специфичных ферментов в зависимости от природы поступающих в них питательных веществ. Это явление носит название индукции ферментов (рис. 13-17).

Похожие публикации