Обо всем на свете

Защита от шума. Защита от шума Логарифмические единицы звуковых измерений

Лекция 6 ЗАЩИТА ОТ ШУМА

Среди основных чувств человека слух и зрение играют важнейшую роль - позволяют человеку владеть звуковыми и зрительными информационными полями.

Даже беглый анализ системы человек – машина – окружающая среда дает основание считать одной из приоритетнейших проблем взаимодействия человека с окружающей средой, особенно на локальном уровне (цех, участок), проблему шумового загрязнения среды.

Длительное воздействие шума может привести к ухудшению слуха, а в отдельных случаях – к глухоте. Шумовое загрязнение среды на рабочем месте неблагоприятно воздействует на работающих: снижается внимание, увеличивается расход энергии при одинаковой физической нагрузке, замедляется скорость психических реакций и т.п. В результате снижается производительность труда и качество выполняемой работы.

Знание физических закономерностей процесса излучения и распространения шума позволит принимать решения, направленные на снижение его негативного воздействия на человека.

Звук. Основные характеристики звукового поля. Распространение звука

Понятие звук , как правило, ассоциируется со слуховыми ощущениями человека, обладающего нормальным слухом. Слуховые ощущения вызываются колебаниями упругой среды, которые представляют собой механические колебания, распространяющиеся в газообразной, жидкой или твердой среде и воздействующие на органы слуха человека. При этом колебания среды воспринимаются как звук только в определенной области частот (16 Гц - 20 кГц) и при звуковых давлениях, превышающих порог слышимости человека.



Частоты колебаний среды, лежащие ниже и выше диапазона слышимости, называются соответственно инфразвуковыми и ультразвуковыми . Они не имеют отношения к слуховым ощущениям человека и воспринимаются как физические воздействия среды.

Звуковые колебания частиц упругой среды имеют сложный характер и могут быть представлены в виде функции времени a = a(t) (рис. 1, а ).

Рис. 1. Колебания частиц воздуха.

Простейший процесс описывается синусоидой (рис. 1, б )

,

где a max - амплитуда колебаний;

w = 2 p f - угловая частота;

f - частота колебаний.

Гармонические колебания с амплитудой a max и частотой f называются тоном.

В зависимости от способа возбуждения колебаний различают:

Плоскую звуковую волну, создаваемую плоской колеблющейся поверхностью;

Цилиндрическую звуковую волну, создаваемую радиально колеблющейся боковой поверхностью цилиндра;

Сферическую звуковую волну, создаваемую точечным источником колебаний типа пульсирующий шар.

Основными параметрами, характеризующими звуковую волну, являются:

Звуковое давление p зв, Па;

Интенсивность звука I , Вт/м 2 .

Длина звуковой волны l , м;

Скорость распространения волны с, м/с;

Частота колебаний f , Гц.

Если в сплошной среде возбудить колебания, то они расходятся во все стороны. Наглядным примером являются колебания волн на воде. С физической точки зрения распространение колебаний состоит в передаче импульса движения от одной молекулы к другой. Благодаря упругим межмолекулярным связям движение каждой из них повторяет движение предыдущей. Передача импульса требует определенной затраты времени, в результате чего движение молекул в точках наблюдения происходит с запаздыванием по отношению к движению молекул в зоне возбуждения колебаний. Таким образом, колебания распространяются с определенной скоростью. Скорость распространения звуковой волны с - это физическое свойство среды.

Звуковые колебания в воздухе приводят к его сжатию и разрежению. В областях сжатия давление воздуха возрастает, а в областях разрежения понижается. Разность между давлением, существующем в возмущенной среде p ср в данный момент, и атмосферным давлением p атм, называется звуковым давлением (рис.2). В акустике этот параметр является основным, через который определяются все остальные.

p зв = p ср - p атм.

Рис. 2. Звуковое давление

Среда, в которой распространяется звук, обладает удельным акустическим сопротивлением Z A , которое измеряется в Па*с/м (или в кг/(м 2 *с) и представляет собой отношение звукового давления p зв к колебательной скорости частиц среды u :

z A = p зв /u = r ,

где с - скорость звука, м; r - плотность среды, кг/м 3 .

Для различных сред значения Z A различны.

Звуковая волна является носителем энергии в направлении своего движения. Количество энергии, переносимой звуковой волной за одну секунду через сечение площадью 1 м 2 , перпендикулярное направлению движения, называется интенсивностью звука . Интенсивность звука определяется отношением звукового давления к акустическому сопротивлению среды Вт/м 2:

Для сферической волны от источника звука с мощностью W , Вт интенсивность звука на поверхности сферы радиуса r равна:

I = W / (4p r 2),

то есть интенсивность сферической волны убывает с увеличением расстояния от источника звука. В случае плоской волны интенсивность звука не зависит от расстояния.

6.1.1 . Акустическое поле и его характеристики

Поверхность тела, совершающая колебания, является излучателем (источником) звуковой энергии, который создает акустическое поле.

Акустическим полем называют область упругой среды, которая является средством передачи акустических волн. Акустическое поле характеризуется:

- звуковым давлением p зв, Па;

- акустическим сопротивлением Z A , Па*с/м.

Энергетическими характеристиками акустического поля являются:

- интенсивность I , Вт/м 2 ;

- мощность звука W, Вт - количество энергии, проходящей за единицу времени через охватывающую источник звука поверхность.

Важную роль при формировании акустического поля играет характеристика направленности звукоизлучения Ф , т.е. угловое пространственное распределение образующегося вокруг источника звукового давления.

Все перечисленные величины взаимосвязаны и зависят от свойств среды, в которой распространяется звук. Если акустическое поле не ограничено поверхностью и распространяется практически до бесконечности, то такое поле называютсвободным акустическим полем. В ограниченном пространстве (например, в закрытом помещении) распространение звуковых волн зависит от геометрии и акустических свойств поверхностей, расположенных на пути распространения волн.

Процесс формирования звукового поля в помещении связан с явлениями реверберации и диффузии .

Если в помещении начинает действовать источник звука, то в первый момент времени имеем только прямой звук. По достижении волной звукоотражающей преграды картина поля меняется из-за появления отраженных волн. Если в звуковом поле поместить предмет, размеры которого малы по сравнению с длиной звуковой волны, то практически не наблюдается искажения звукового поля. Для эффективного отражения необходимо, чтобы размеры отражающей преграды были больше или равны длине звуковой волны.

Звуковое поле, в котором возникает большое количество отраженных волн с различными направлениями, в результате чего удельная плотность звуковой энергии одинакова по всему полю, называется диффузным полем.

После прекращения источником излучения звука акустическая интенсивность звукового поля уменьшается до нулевого уровня за бесконечное время. Практически считается, что звук полностью затухает, когда его интенсивность падает в 10 6 раз от уровня, существующего в момент его выключения. Любое звуковое поле как элемент колеблющейся среды обладает собственной характеристикой затухания звука – реверберацией ("послезвучание").

Звук - психофизиологическое ощущение, вызы­ваемое механическими колебаниями частиц упругой среды. Звуковым колебаниям соответствует область частот в интервале 20...20 000 Гц. Колебания с часто­той меньше 20 Гц называют инфразвуковыми , а боль­ше 20 000 Гц - ультразвуковыми . Воздействие на человека инфразвуковых колебаний вызывает непри­ятные ощущения. В природе инфразвуковые колеба­ния могут возникать при волнениях моря, колебани­ях земной поверхности. Ультразвуковые колебания используются для лечебных целей в медици­не и в радиоэлектронных устройств, например в фильтрах. Возбуждение звука вызывает колебательный про­цесс, изменяющий давление в упругой среде, в кото­рой образуются чередующиеся слои сжатия и разре­жения , распространяющиеся от источника звука в виде звуковых волн. В жидкой и газообразной средах час­тицы среды колеблются относительно положения рав­новесия в направлении распространения волны, т.е. волны являются продольными. В твердых телах распространяются поперечные волны, так как частицы среды колеблются в направлении, перпендикулярном линии распространения волны. Пространство, в котором происходит распростра­нение звуковых волн, называют звуковым полем . Раз­личают свободное звуковое поле, когда влияние ог­раждающих поверхностей, отражающих звуковые вол­ны, мало, и диффузное звуковое поле, где в каждой точке звуковая мощность на единицу площа­ди одинакова во всех направлениях. Распространение волн в звуковом поле происходит с определенной скоростью, которая называется скоро­стью звука . Формула (1.1)

с = 33l√Т/273, где Т - температура по шкале Кельвина.

В расчетах принимается с = 340 м/с, что приблизительно соответствует температуре 17°С при нормальном атмосферном давлении. Поверхность, соединяющую смежные точки поля с одинаковой фазой колебания (например, точки сгу­щения или разрежения), называют фронтом волны. Наиболее часто встречаются звуковые волны со сфе­рическим и плоским фронтами волны . Фронт сфери­ческой волны имеет форму шара и образу­ется на небольшом расстоянии от источника звука, если его размеры малы по сравнению с длиной излу­чаемой волны. Фронт плоской волны имеет форму плоскости, перпендикулярной направлению распрос­транения звуковой волны (звуковому лучу). Волны с плоским фронтом образуются на больших по сравне­нию с длиной волны расстояниях от источника звука. Звуковое поле характеризуется звуковым давлени­ем , колебательной скоростью , интенсивностью звука и плотностью звуковой энергии .



Звуковое давление - это разность между мгновен­ным значением давления р ам в точке среды при про­хождении через нее звуковой волны и атмосферным давлением р ас в той же точке, т.е. р = р ас - р ам. Единица измерения звукового давления в системе СИ - ньютон на квадратный метр: 1 Н/м 2 = 1 Па (паскаль). Реальные источники звука создают даже при самых громких звуках звуковые давления в десятки тысяч раз меньше нормального атмосферного давле­ния.

Колебательная скорость представляет собой ско­рость колебаний частиц среды около своего положе­ния покоя. Колебательная скорость измеряется в мет­рах в секунду. Эту скорость не следует путать со ско­ростью звука. Скорость звука - величина постоянная для данной среды, колебательная скорость - пере­менная. Если частицы среды перемещаются по направлению распространения волны, то колеба­тельную скорость считают положительной, при обрат­ном перемещении частиц - отрицательной. Реальные источники звука даже при самых громких звуках вызывают колебательные скорости в несколько тысяч раз меньше скорости звука. Для плоской звуковой волны формула колебательной скорости имеет вид (1.2)

V = p/ρ·с, где ρ - плотность воздуха, кг/м 3 ; с - скорость звука, м/с.

Произведение ρ·с для данных атмосферных усло­вий есть величина постоянная, ее называют акусти­ческим сопротивлением .

Интенсивность звука - количество энергии, про­ходящей в секунду через единицу площади, перпен­дикулярной к направлению распространения звуко­вой волны. Интенсивность звука измеряется в ваттах на метр квадратный (Вт/м 2).

Плотность звуковой энергии есть количество зву­ковой энергии, находящейся в единице объема звуко­вого поля: ε = J/c.

4. Контрольные вопросы



Глоссарий

Литература

ЗВУКОВОЕ ПОЛЕ - совокупность пространственно-временных распределений величин, характеризующих рассматриваемое звуковое возмущение. Важнейшие из них: звуковое давление р, колебательная скорость частиц v, колебательное смещение частиц x, относительное изменение плотности (т. н. акустич. сжатие) s=dr/r (где r - плотность среды), адиабатич. изменение темп-ры dТ , сопровождающее сжатие и разрежение среды. При введении понятия 3. п. среду рассматривают как сплошную и молекулярное строение вещества во внимание не принимают. 3. п. изучают либо методами геометрической акустики , либо на основе теории волн. При достаточно гладкой зависимости величин, характеризующих 3. п., от координат и времени (т. е. при отсутствии скачков давления и колебат. скорости от точки к точке) задание пространственно-временной зависимости одной из этих величин (напр., звукового давления) полностью определяет пространственно-временные зависимости всех остальных. Эти зависимости определяются ур-ниями 3. п., к-рые в отсутствие дисперсии скорости звука сводятся к волновому ур-нию для каждой из величин и ур-ниям, связывающим эти величины между собой. Напр., звуковое давление удовлетворяет волновому ур-нию

А при известном р можно определить остальные характеристики 3. п. по ф-лам:

где с - скорость звука, g=c p /c V - отношение теплоёмкости при пост. давлении к теплоёмкости при пост. объёме, а - коэф. теплового расширения среды. Для гармонич. 3. п. волновое ур-ние переходит в ур-ние Гельмгольца: Dр +k 2 р = 0, где k= w/c - волновое число для частоты w, а выражения для v и x принимают вид:

Кроме того, 3. п. должно удовлетворять граничным условиям, т. е. требованиям, к-рые налагают на величины, характеризующие 3. п., физ. свойства границ - поверхностей, ограничивающих среду, поверхностей, ограничивающих помещённые в среду препятствия, и поверхностей раздела разл. сред. Напр., на абсолютно жёсткой границе нормальная компонента колебат. скорости v n должна обращаться в нуль; на свободной поверхности должно обращаться в нуль звуковое давление; на границе, характеризующейся импедансом акустическим, p/v n должно равняться удельному акустич. импедансу границы; на поверхности раздела двух сред величины р и v n по обе стороны от поверхности должны быть попарно равны. В реальных жидкостях и газах имеется дополнит. граничное условие: обращение в нуль касательной компоненты колебат. скорости на жёсткой границе или равенство касательных компонент на поверхности раздела двух сред. В твёрдых телах внутр. напряжения характеризуются не давлением, а тензором напряжений, что отражает наличие упругости среды по отношению к изменению не только её объёма (как в жидкостях и газах), но и формы. Соответственно усложняются и ур-ния 3. п., и граничные условия. Ещё более сложны ур-ния для анизотропных сред. Ур-ния 3. п. и граничные условия отнюдь не определяют сами по себе вид волн: в разл. ситуациях в той же среде при тех же граничных условиях 3. п. будут иметь разный вид. Ниже описаны разные виды 3. п., возникающие в разл. ситуациях. 1) Свободные волны - 3. п., к-рое может существовать во всей неогранич. среде в отсутствие внеш. воздействий, напр., плоские волны p=p(x 6ct) , бегущие вдоль оси х в положительном (знак "-") и отрицательном (знак "+") направлениях. В плоской волне p/v = brс , где rс - волновое сопротивление среды. В местах положит. звукового давления направление колебат. скорости в бегущей волне совпадает с направлением распространения волны, в местах отрицат. давления - противоположно этому направлению, а в местах обращения давления в нуль колебат. скорость также обращается в нуль. Гармонич. плоская бегущая волна имеет вид: p =p 0 cos(wt -kx+ j), где р 0 и j 0 - соответственно амплитуда волны и её нач. фаза в точке х=0 . В средах с дисперсией скорости звука скорость гармонич. волны с =w/k зависит от частоты. 2) Колебания в огранич. областях среды в отсутствие внеш. воздействий, напр. 3. п., возникающее в замкнутом объёме при заданных нач. условиях. Такие 3. п. можно представить в виде суперпозиции стоячих волн, характерных для данного объёма среды. 3) 3. п., возникающие в неогранич. среде при заданных нач. условиях - значениях р и v в нек-рый нач. момент времени (напр., 3. п., возникающие после взрыва). 4) 3. п. излучения, создаваемые колеблющимися телами, струями жидкости или газа, захлопывающимися пузырьками и др. естеств. или искусств. акустич. излучателями (см. Излучение звука ).Простейшими по форме поля излучениями являются следующие. Монопольное излучение - сферически симметричная расходящаяся волна; для гармонич. излучения она имеет вид: р = -i rwQехр (ikr )/4pr , где Q - производительность источника (напр., скорость изменения объёма пульсирующего тела, малого по сравнению с длиной волны), помещённого в центр волны, а r - расстояние от центра. Амплитуда звукового давления при монопольном излучении изменяется с расстоянием как 1/r , а

в неволновой зоне (kr <<1) v изменяется с расстоянием как 1/r 2 , а в волновой (kr >>1) - как 1/r . Сдвиг фаз j между р и v монотонно убывает от 90° в центре волны до нуля на бесконечности; tg j=1/kr . Дипольное излучение - сферич. расходящаяся волна с "восьмёрочной" характеристикой направленности вида:

где F - сила, приложенная к среде в центре волны, q - угол между направлением силы и направлением на точку наблюдения. Такое же излучение создаётся сферой радиуса a <u=F/2 prwa 3 . Поршневое излучение - 3. п., создаваемые поступательными колебаниями плоского поршня. Если его размеры >>l, то излучение представляет собой квазиплоскую волну, распространяющуюся в виде огранич. пучка, опирающегося на поршень. По мере удаления от поршня дифракция размывает пучок, переходящий на большом расстоянии от поршня в многолепестковую расходящуюся сферич. волну. Все виды 3. п. излучения на большом расстоянии от излучателя (в т. н. дальней зоне, или зоне Фраунгофера) асимптотически принимают вид расходящихся сферич. волн: р =A ехр (ikr)R (q, j)/r , где А -постоянная, q и j - углы сферич. системы координат, R (q, j) - характеристика направленности излучения. Т.о., асимптотически поле убывает обратно пропорционально расстоянию точки наблюдения от области расположения источника звука. Началом дальней зоны обычно считают расстояние r =D 2 /l, где D - поперечные размеры излучающей системы. В т. н. ближней зоне (френелевская зона) для 3. п. излучения в общем случае нет к--л. определённой зависимости от r , а угл. зависимость меняется при изменении r - характеристика направленности ещё не сформирована. 5) 3. п. фокусировки - поля вблизи фокусов и каустик фокусирующих устройств, характеризующиеся повыш. значениями звукового давления, обращающегося (при пользовании приближениями геом. акустики) в бесконечность в фокусах и на каустиках (см. Фокусировка звука ). 6) 3. п., связанные с наличием в среде ограничивающих поверхностей и препятствий. При отражении и преломлении плоских волн на плоских границах возникают также плоские отражённые и преломлённые волны. В волноводах акустических , заполненных однородной средой, суперпозиция плоских волн образует нормальные волны. При отражении гармонич. плоских волн от плоских границ образуются стоячие волны, причём результирующие поля могут оказаться стоячими в одном направлении и бегущими - в другом. 7) 3. п., затухающие вследствие неидеальности среды - наличия вязкости, теплопроводности и т. п. (см. Поглощение звука ).Для бегущих волн влияние такого затухания характеризуют множителем ехр aх , где a - амплитудный пространственный коэф. затухания, связанный с добротностью Q среды соотношением: a=k/2 Q. В стоячих волнах появляется множитель ехр (-dt >>

З вуковое поле проявляется в виде кинетической энергии колеблющихся материальных тел, звуковых волн в средах, обладающих упругой структурой (твердые тела, жидкости и газы). Процесс распространения колебаний в упругой среде называют волной . Направление распространения звуковой волны называют звуковым лучом , а поверхность, соединяющую все смежные точки поля с одинаковой фазой колебания частиц среды – фронтом волны . В твердых телах колебания могут распространяться как в продольном, так и в поперечном направлении. В воздухе распространяются только продольные волны .

Свободным звуко­вым полем называют такое поле, в котором преобладает прямая звуко­вая волна, а отраженные волны отсутствуют или пренебрежимо малы.

Диффузное звуко­вое поле - это такое поле, в каждой точке которого плотность звуковой энергии одинакова и по всем направлениям которого распространяются одинаковые потоки энергии вединицу времени.

Звуковые волны характеризуются следующими основными параметрами.

Длина волны - равна отношению скорости звука (340 м/с - в воздухе) к частоте звуковых колебаний. Таким образом, длина волны в воздухе может изменяться от 1,7 см (для f = 20000 Гц) до 21 м (для f = 16 Гц).

Звуковое давление - определяется как разность между мгновенным давлением звукового поля в данной точке и статистическим (атмосферным) давлением. Звуковое давление измеряется в Паскалях (Па), Па = Н/м 2 . Физические аналоги – электрическое напряжение, ток.

Интенсивность звука – среднее количество звуковой энергии проходящей в единицу времени через единицу поверхности, перпендикулярной к направлению распространения волны. Интенсивность измеряется в единицах Вт/м 2 и представляет собой активную составляющую мощности звуковых колебаний. Физический аналог – электрическая мощность.

В акустике результаты измерений принято отображать в виде относительных логарифмических единиц. Для оценки слухового ощущения используются единица под названием Бел (Б). Поскольку Бел представляет собой довольно крупную единицу, была введена более мелкая величина – децибел (дБ) равная 0,1 Б.

Звуковое давление, интенсивность звука выражают в относительных акустических уровнях:

,

Нулевым значениям акустических уровней соответствуют общепринятые и Вт/м 2 при гармоническом звуковом колебании частотой 1000 Гц. Приведенные значения соответствуют примерно минимальным значениям, вызывающим слуховые ощущения (абсолютному порогу слышимости).

Условия проведения измерений характеристик микрофонов. Акустические измерения имеют ряд специфических особенностей. Так, измерение некоторых характеристик электроакустической аппаратуры необходимо проводить в условиях свободного поля, т.е. когда отсутствуют отраженные волны.

В обычных помещениях это условие невыполнимо, а проводить измерения на открытом воздухе сложно и не всегда возможно. Во-первых, на открытом воздухе трудно избежать отражений от поверхностей, например, от земли. Во-вторых, проведение измерений в этом случае зависит от атмосферных условий (ветер и т.д.) и может приводить к большим погрешностям, не говоря уже о ряде других неудобств. В-третьих, на открытом воздухе трудно избежать влияния посторонних (промышленных и др.) шумов.

Поэтому для проведения измерений в свободном поле пользуются специальными звукозаглушенными камерами, в которых отраженные волны практически отсутствуют.

Измерение характеристик микрофона в заглушенной камере . Для измерения чувствительности микрофона в свободном поле следовало бы вначале измерить звуковое давление в точке, куда будет помещен испытуемый микрофон, а потом уже помещать его в эту точку. Но так как в камере практически отсутствует интерференция, а расстояние микрофона от громкоговорителя берут равным 1 - 1,5 м (или более) при диаметре излучателя не более 25 см, то измерительный микрофон можно располагать поблизости от испытуемого микрофона. Схема измерительной установки представлена на рис.4. Чувствительность определяют во всем номинальном диапазоне частот. Устанавливая по измерителю звукового давления (шумомеру) необходимое давление , измеряют напряжение , развиваемое испытуемым микрофоном, и определяют его осевую чувствительность .

E OC = U M / P (мВ/Па)

Чувствительность определяют либо по напряжению холостого хода, либо по напряжению на номинальной нагрузке . Как правило, за номинальную нагрузку принимают модуль внутреннего сопротивления микрофона на частоте 1000 Гц.

Рис.4. Функциональная схема измерения чувствительности микрофона:

1 - генератор тональный или белого шума; 2 - фильтр октавный (третьоктавный); 3 - усилитель; 4 - заглушенная камера; 5 – акустический излучатель; 6 - испытуемый микрофон; 7 - измерительный микрофон; 8 - милливольтметр; 9 - милливольтметр, градуированный в паскалях или децибелах (шумомер).

Уровень чувствительности определяется как чувствительность, выраженная в децибелах, относительно величины равной 1 .

Стандартный уровень чувствительности (в децибелах) определяют как отношение напряжения , развиваемое на номинальном сопротивлении нагрузки при звуковом давлении 1 Па, к напряжению, соответствующему мощности =1 мВт и рассчитывают по формуле:

где - напряжение (В), развиваемое микрофоном на номинальном сопротивлении нагрузки (Ом) при звуковом давлении 1 Па.

Частотной характеристикой микрофона называют зависимость чувствительности микрофона от частоты при постоянных значениях звукового давления и тока питания микрофона. Частотную характеристику снимают путем плавного изменения частоты генератора. По полученной частотной характеристике определяют неравномерность ее в номинальном и рабочем диапазонах частот.

Характеристику направленности микрофона снимают по той же схеме (рис.4), причем в зависимости от задания или на нескольких частотах, используя тональный генератор, или для шумового сигнала в третьоктавных полосах, или для заданной полосы частот, используя вместо третьоктавных фильтров соответствующий полосовой фильтр.

Для снятия характеристик направленности испытуемый микрофон укрепляют на поворотном диске с лимбом. Диск вращают вручную или автоматически, синхронно с регистрирующим столиком. Характеристику снимают в одной плоскости, проходящей через рабочую ось микрофона, если он представляет собой тело вращения вокруг своей оси. Для других форм микрофона характеристику снимают для заданных плоскостей, проходящих через рабочую ось. Угол поворота отсчитывают между рабочей осью и направлением на источник звука. Нормируют характеристику направленности относительно осевой чувствительности.

Похожие публикации