Обо всем на свете

История развития анатомии. (Краткий очерк). История развития физиологии. Вклад отечественных и зарубежных ученых в ее развитие Ученые анатомии и их открытия

Вильям Гарвей
Официальной датой возникновения
физиологии можно считать 1628 г.,
когда английский врач, анатом и
физиолог Вильям Гарвей
опубликовал свой трактат
«Анатомическое исследование о
движении сердца и крови у
животных». В нем он впервые
представил экспериментальные
данные о наличии большого и малого
кругов кровообращения, а также о
влиянии сердца на кровообращение.

В XVII в. ученые проводили
целый ряд исследований по
физиологии мышц, дыхания,
обмена веществ. Но
полученные
экспериментальные данные
объяснялись в то время с
позиций анатомии, химии и
физики.
Первое учебное пособие по
физиологии было
опубликовано немецким
ученым А. Галлером в
середине XVIII в.
А. Галлер

Ф.Веллер
Т.Шванн
И. М. Сеченов
Дальнейшее развитие физиологическая наука получила в XIX в. Этот
период связан с достижениями в органической химии (Ф. Веллер
синтезировал мочевину);
в гистологии - открытием клетки (Т. Шванн);
в физиологии - созданием рефлекторной теории нервной
деятельности (И.М. Сеченов).

К. Людвиг
К. Бернар
И. Ф. Цион
Ф.В.Овсяников
Важной вехой в развитии экспериментальной физиологии было изобретение кимографа и
разработка метода графической регистрации артериального давления немецким ученым
К.Людвигом в 1847 г.
Значительный вклад во многие области физиологии в этот период внес знаменитый
французский ученый К. Бернар (1813-1878). Его исследования касались функций спинного
мозга, обмена углеводов, активности пищеварительных ферментов, роли желез внутренней
секреции.
Интересные открытия в области физиологии в середине и конце XIX в. были сделаны в
области регуляции деятельности сердца и кровеносных сосудов К. Людвиг (1816-1895), И.Ф.
Цион (1842-1912), К. Бернар (1813-1878), Ф. В. Овсяников (1827-1906).

И.М.Сеченов
И.П.Павлов
Важная заслуга в физиологии принадлежит И.М. Сеченову, который впервые обнаружил наличие
процессов торможения в центральной нервной системе и на основании этого создал учение о
рефлекторной деятельности организма. Его труд «Рефлексы головного мозга» послужил основой
формирования учения о нервизме. В этой работе он высказал предположение, что различные проявления
психической деятельности человека в конечном счете сводятся к мышечному движению. Идеи ИМ.
Сеченова позднее успешно развивал знаменитый русский физиолог И.П. Павлов.
На основании объективного изучения поведенческих реакций он создал новое направление в науке -
физиологию высшей нервной деятельности. Учение И.П. Павлова о высшей нервной деятельности человека
и животных позволило углубить теорию рефлекторной деятельности мозга.

Значительное место в развитии физиологии занимала церковно-монастырская
медицина: лекари-монахи работали в Полоцке, Турове и других городах. С 14 века на
Беларуси появились врачи, которые получали образование в Пражском, Падуанском,
Гальском и других университетах, а также народные лекари-практики и медики-хирурги
(цирульники). Первое анатомирование тела было проведено в 1586 году в Гродно для
выяснения причины смерти короля Стефана Батория. Первые госпитали открылись в
Бресте в 1495 г. и Минске в 1513 г. В 17 веке по несколько госпиталей было в Гродно,
Новогрудке, Слуцке, Пинске, Полоцке, Несвиже, Лиде и других городах. В отдельных
больницах уже оказывалась высококвалифицированная медицинская помощь с
элементами хирургической и акушерской специализации.
До 1775 года медицинских школ в Республике Беларусь не существовала и только в 1775
году в Гродно появилась медицинская академия – первый учебный и научный центр
Беларуси. Здесь был создан музей анатомических препаратов. Научные исследования
проводились под руководством Ж.Э.Жилибера (1741-1814 гг.), с его именем связаны
первые описания строения организма человека. При преподавании много внимания
уделялось вопросам сравнительной анатомии и физиологии. В 18-19 вв. в республике
были заложены основы медицинского образования: кроме Гродненской медицинской
академии, были открыты акушерские школы в Могилёве (1865 г.), Витебске (1872 г.),
Гродно (1875 г.), фельдшерские в Могилёве (1875 г.), Витебске (1906 г.), Минске (1907 г.).
На территории дореволюционной Беларуси существовало 3 научно-исследовательских
учреждения, наиболее крупным из них была станция лекарственных растений под
Могилёвом (1910 г.).

С.И.Лебёдкин
П.И.Лобко
Значительным событием в научной жизни республики явилось открытие в 1921 году в Минске
Белорусского государственного университета. Развитие анатомо-физиологических наук в Беларуси
связано именно с организацией кафедр анатомии (С.И.Лебёдкин – основоположник национальной
школы морфологов) и физиологии (Л.П.Рязанов) на медицинском факультете в составе БГУ (1921 г.) и
Минском медицинском институте (1930 г.).
После 40-ых годов анатомо-физиологические исследования концентрируются на соответствующих
кафедрах медицинских вузов Беларуси и в лабораториях НИИ Министерства здравоохранения.
Белорусские анатомы установили взаимосвязь между развивающимися нервами и иннервируемыми
ими тканями, открыли ряд закономерностей формирования и строения вегетативной нервной
системы, обосновали представление о множественности иннервационных связей внутренних
органов, образовании новых нервных путей (Д.М.Голуб). Исследованы вопросы нейроморфологии
(Д.П.Амвросьев, П.И.Лобко, А.С.Леонтюк), строение костей и суставов (Е.Д.Гевлич).

В настоящее время научно-исследовательская работа по анатомофизиологическому направлению ведётся на соответствующих кафедрах
Витебского, Гомельского, Гродненского, Минского медицинских университетов,
Белорусской академии физической культуры и спорта, в Витебской академии
ветеринарной медицины, БГУ, ВГУ и других университетах. Значительную роль в
развитии анатомии сыграли работы Д.М.Голуба по проблемам эмбриогенеза
человека, изучении структурной организации вегетативной нервной системы,
нервных путей и дополнительных центров иннервации. Изучено строение
симпатической нервной системы, нервов надпочечников, кровеносных сосудов и
других органов (А.С.Леонтюк, А.П.Амвросьев, П.И.Лобко). Исследуются
лимфатические сосуды костей и суставов (В.И.Ашкадеров), костный и
перепончатый лабиринты человека (З.И.Ибагимова), возрастные особенности
головного мозга и его артериальных сосудов (А.Н.Габузов). В развитие физиологии
внесли вклад Н.И.Аринчин, Л.Ю.Брановицкий, И.А.Витохин, В.Н.Гурин,
А.С.Дмитриев, И.К.Жмакин, А.П.Кесарева, В.Н.Калюнов, А.А.Логинов, В.В.Солтанов,
Г.С.Юньев. В области физиологии изучаются центральные и периферические
механизмы терморегуляции, закономерности деятельности вегетативной нервной
системы в норме и в условиях экстремальных факторов окружающей среды.

1.Физиология -это:
А)Наука о строении организмов.
Б)наука, изучающая процессы жизнедеятельности организма, его различных органов и систем, их взаимодействие друг с другом и
внешней средой.
В)наука о процессах жизнедеятельности, развитии, происхождении человека.
2.Официальная дата возникновения физиологии:
А)1632г.
Б)1628г.
В)1624г.
3.Первое учебное пособие по физиологии было опубликовано ученым:
А)А. Галлер
Б)Ф.Веллер
В)Т.Шванн
4.В каком году появился первый учебный и научный центр Беларуси?
А)1773г.
Б)1770г.
В)1775г.

Б)наука, изучающая процессы жизнедеятельности организма,
его различных органов и систем, их взаимодействие друг с другом
и внешней средой.
Б)1628г.
А)А. Галлер
В)1775г.

Анатомия и физиология

Учебник

ВВЕДЕНИЕ

Анатомия и физиология человека относится к числу биологических дисциплин, составляющих основу теоретической и практической подготовки педагогов, спортсменов, врачей и медицинских сестер.
Анатомия - это наука, которая изучает форму и строение организма в связи с его функциями, развитием и под воздействием окружающей среды.
Физиология - наука о закономерностях процессов жизнедеятельности живого организма, его органов, тканей и клеток, их взаимосвязи при изменении различных условий и состояния организма.
Анатомия и физиология человека тесно связаны со всеми медицинскими специальностями. Их достижения постоянно оказывают влияние на практическую медицину. Невозможно проводить квалифицированное лечение, не зная хорошо анатомии и физиологии человека. Поэтому прежде чем изучать клинические дисциплины, изучают анатомию и физиологию. Эти предметы составляют фундамент медицинского образования и вообще медицинской науки.
Строение тела человека по системам изучает систематическая (нормальная) анатомия.
Строение тела человека по областям с учетом положения органов и их взаимоотношения между собой, со скелетом изучает топографическая анатомия.
Пластическая анатомия рассматривает внешние формы и пропорции тела человека, а также топографию органов в связи с необходимостью объяснения особенностей телосложения; возрастная анатомия - строение тела человека в зависимости от возраста.
Патологическая анатомия изучает поврежденные той или иной болезнью органы и ткани.
Совокупность физиологических знаний делят на ряд отдельных, но взаимосвязанных направлений - общую, специальную (или частную) и прикладную физиологию.
Общая физиология включает сведения, которые касаются природы основных жизненных процессов, общих проявлений жизнедеятельности, таких как метаболизм органов и тканей, общие закономерности реагирования организма (раздражение, возбуждение, торможение) и его структур на воздействие среды.
Специальная (частная) физиология исследует особенности отдельных тканей (мышечной, нервной и др.), органов (печени, почек, сердца и др.), закономерности объединения их в системы (системы дыхания, пищеварения, кровообращения).
Прикладная физиология изучает закономерности проявлений деятельности человека в связи со специальными задачами и условиями (физиология труда, питания, спорта).
Физиологию условно принято разделять на нормальную и патологическую. Первая изучает закономерности жизнедеятельности здорового организма, механизмы адаптации функций на воздействие разных факторов и устойчивость организма. Патологическая физиология рассматривает изменения функций больного организма, выясняет общие закономерности появления и развития патологических процессов в организме, а также механизмы выздоровления и реабилитации.



Краткая история развития анатомии и физиологии

Развитие и формирование представлений об анатомии и физиологии начинаются с глубокой древности.
Среди первых известных истории ученых-анатомов следует назвать Алкемона из Кратоны, который жил в V в. до н. э. Он первый начал анатомировать (вскрывать) трупы животных, чтобы изучить строение их тела, и высказал предположение о том, что органы чувств имеют связь непосредственно с головным мозгом, и восприятие чувств зависит от мозга.
Гиппократ (ок. 460 - ок. 370 до н. э.) - один из выдающихся ученых медицины Древней Греции. Изучению анатомии, эмбриологии и физиологии он придавал первостепенное значение, считая их основой всей медицины. Он собрал и систематизировал наблюдения о строении тела человека, описал кости крыши черепа и соединения костей при помощи швов, строение позвонков, ребер, внутренние органы, орган зрения, мышцы, крупные сосуды.
Выдающимися учеными-естествоиспытателями своего времени были Платон (427-347 до н. э.) и Аристотель (384-322 до н. э.). Изучая анатомию и эмбриологию, Платон выявил, что головной мозг позвоночных животных развивается в передних отделах спинного мозга. Аристотель, вскрывая трупы животных, описал их внутренние органы, сухожилия, нервы, кости и хрящи. По его мнению, главным органом в организме является сердце. Он назвал самый крупный кровеносный сосуд аортой.
Большое влияние на развитие медицинской науки и анатомии имела Александрийская школа врачей, которая была создана в III в. до н. э. Врачам этой школы разрешалось вскрывать трупы людей в научных целях. В этот период стали известны имена двух выдающихся ученых-анатомов: Герофила (род. ок. 300 до н. э.) и Эрасистрата (ок. 300 - ок. 240 до н. э.). Герофил описал оболочки головного мозга и венозные пазухи, желудочки мозга и сосудистые сплетения, глазной нерв и глазное яблоко, двенадцатиперстную кишку и сосуды брыжейки, простату. Эрасистрат достаточно полно для своего времени описал печень, желчные протоки, сердце и его клапаны; знал, что кровь из легкого поступает в левое предсердие, затем в левый желудочек сердца, а оттуда по артериям к органам. Александрийской школе медицины принадлежит также открытие способа перевязки кровеносных сосудов при кровотечении.
Самым выдающимся ученым в разных областях медицины после Гиппократа стал римский анатом и физиолог Клавдий Гален (ок. 130 - ок. 201). Он впервые начал читать курс анатомии человека, сопровождая вскрытием трупов животных, главным образом обезьян. Вскрытие человеческих трупов в то время было запрещено, в результате чего Гален, факты без должных оговорок, переносил на человека строение тела животного. Обладая энциклопедическими знаниями, он описал 7 пар (из 12) черепных нервов, соединительную ткань, нервы мышц, кровеносные сосуды печени, почек и других внутренних органов, надкостницу, связки.
Важные сведения получены Галеном о строении головного мозга. Гален считал его центром чувствительности тела и причиной произвольных движений. В книге «О частях тела человеческого» он высказывал свои анатомические взгляды и рассматривал анатомическое структуры в неразрывной связи с функцией.
Авторитет Галена был очень большой. По его книгам учились медицине почти на протяжении 13 веков.
Большой вклад в развитие медицинской науки внес таджикский врач и философ Абу Али Ибн Сына, или Авиценна (ок. 980-1037). Он написал «Канон врачебной науки», в котором были систематизированы и дополнены сведения по анатомии и физиологии, заимствованные из книг Аристотеля и Галена. Книги Авиценны были переведены на латинский язык и переиздавались более 30 раз.
Начиная с XVI-XVIII вв. во многих странах открываются университеты, выделяются медицинские факультеты, закладывается фундамент научной анатомии и физиологии. Особенно большой вклад в развитие анатомии внес итальянский ученый и художник эпохи Возрождения Леонардо да Винчи (1452-1519). Он анатомировал 30 трупов, сделал множество рисунков костей, мышц, внутренних органов, снабдив их письменными пояснениями. Леонардо да Винчи положил начало пластической анатомии.
Основателем научной анатомии считается профессор Падуанского университета Андрас Везалий (1514-1564), который на основе собственных наблюдений, сделанных при вскрытии трупов, написал классический труд в 7 книгах «О строении человеческого тела» (Базель, 1543). В них он систематизировал скелет, связки, мышцы, сосуды, нервы, внутренние органы, мозг и органы чувств. Исследования Везалия и выход в свет его книг способствовали развитию анатомии. В дальнейшем его ученики и последователи в XVI-XVII вв. сделали много открытий, детально описали многие органы человека. С именами этих ученых в анатомии связаны названия некоторых органов тела человека: Г. Фаллопий (1523-1562) - фаллопиевы трубы; Б. Евстахий (1510-1574) - евстахиева труба; М. Мальпиги (1628- 1694) - мальпигиевы тельца в селезенке и почках.
Открытия в анатомии послужили основой для более глубоких исследований в области физиологии. Испанский врач Мигель Сервет (1511-1553), ученик Везалия Р. Коломбо (1516-1559) высказали предположение о переходе крови из правой половины сердца в левую через легочные сосуды. После многочисленных исследований английский ученый Уильям Гарвей (1578-1657) издал книгу «Анатомическое исследование о движении сердца и крови у животных» (1628), где привел доказательство движения крови по сосудам большого круга кровообращения, а также отметил наличие мелких сосудов (капилляров) между артериями и венами. Эти сосуды были открыты позже, в 1661 г., основателем микроскопической анатомии М. Мальпиги.
Кроме того, У. Гарвей ввел в практику научных исследований вивисекцию, что позволяло наблюдать работу органов животного при помощи разрезов тканей. Открытие учения о кровообращении принято считать датой основания физиологии животных.
Одновременно с открытием У. Гарвея вышел в свет труд Каспаро Азелли (1591-1626), в котором он сделал анатомическое описание лимфатических сосудов брыжейки тонкой кишки.
На протяжении XVII-XVIII вв. появляются не только новые открытия в области анатомии, но и начинает выделяться ряд новых дисциплин: гистология, эмбриология, несколько позже - сравнительная и топографическая анатомия, антропология.
Для развития эволюционной морфологии большую роль сыграло учение Ч. Дарвина (1809-1882) о влиянии внешних факторов на развитие форм и структур организмов, а также на наследственность их потомства.
Клеточная теория Т. Шванна (1810-1882), эволюционная теория Ч. Дарвина поставили перед анатомической наукой ряд новых задач: не только описывать, но и объяснять строение тела человека, его особенности, раскрывать в анатомических структурах филогенетическое прошлое, разъяснять, как сложились в процессе исторического развития человека его индивидуальные признаки.
К наиболее значительным достижениям XVII-XVIII вв. относится сформулированное французским философом и физиологом Рене Декартом представление об «отраженной деятельности организма». Он внес в физиологию понятие о рефлексе. Открытие Декарта послужило основанием для дальнейшего развития физиологии на материалистической основе. Позже представления о нервном рефлексе, рефлекторной дуге, значении нервной системы во взаимоотношении между внешней средой и организмом получили развитие в трудах известного чешского анатома и физиолога Г. Прохаски (1748-1820). Достижения физики и химии позволили применять в анатомии и физиологии более точные методы исследований.
В XVIII-XIX вв. особенно значительный вклад в области анатомии и физиологии был внесен рядом российских ученых. М. В. Ломоносов (1711-1765) открыл закон сохранения материи и энергии, высказал мысль об образовании тепла в самом организме, сформулировал трехкомпонентную теорию цветного зрения, дал первую классификацию вкусовых ощущений. Ученик М. В. Ломоносова А. П. Протасов (1724-1796) - автор многих работ по изучению телосложения человека, строения и функций желудка.
Профессор Московского университета С. Г. Забелин (1735-1802) читал лекции по анатомии и издал книгу «Слово о сложениях тела человеческого и способах, как оные предохранять от болезней», где высказал мысль об общности происхождения животных и человека.
В 1783 г. Я. М. Амбодик-Максимович (1744-1812) опубликовал «Анатомо-физиологический словарь» на русском, латинском и французском языках, а в 1788 г. А. М. Шумлян-ский (1748-1795) в своей книге описал капсулу почечного клубочка и мочевые канальцы.
Значительное место в развитии анатомии принадлежит Е. О. Мухину (1766-1850), который на протяжении многих лет преподавал анатомию, написал учебное пособие «Курс анатомии».
Основателем топографической анатомии является Н. И. Пирогов (1810-1881). Он разработал оригинальный метод исследования тела человека на распилах замороженных трупов. Автор таких известных книг, как «Полный курс прикладной анатомии человеческого тела» и «Топографическая анатомия, иллюстрированная разрезами, проведенными через замороженное тело человека в трех направлениях». Особенно тщательно Н. И. Пирогов изучал и описал фасции, их соотношение с кровеносными сосудами, придавая им большое практическое значение. Свои исследования он обобщил в книге «Хирургическая анатомия артериальных стволов и фасций».
Функциональную анатомию основал анатом П. Ф. Лес-гафт (1837-1909). Его положения о возможности изменения структуры организма человека путем воздействия физических упражнений на функции организма положены в основу теории и практики физического воспитания. .
П. Ф. Лесгафт один из первых применил метод рентгенографии для анатомических исследований, экспериментальный метод на животных и методы математического анализа.
Вопросам эмбриологии были посвящены работы известных российских ученых К. Ф. Вольфа, К. М. Бэра и X. И. Пандера.
В XX в. успешно разрабатывали функциональные и экспериментальные направления в анатомии такие ученые-исследователи, как В. Н. Тонков (1872-1954), Б. А. Долго-Сабуров (1890-1960), В. Н. Шевкуненко (1872-1952), В. П. Воробьев(1876-1937),Д.А.Жданов(1908-1971)идругие.
Формированию физиологии как самостоятельной науки вXX в. значительно способствовали успехи в области физики и химии, которые дали исследователям точные методические приемы, позволившие охарактеризовать физическую и химическую суть физиологических процессов.
И. М. Сеченов (1829-1905) вошел в историю науки как первый экспериментальный исследователь сложного в области природы явления - сознания. Кроме того, он был первым, кому удалось изучить растворенные в крови газы, установить относительную эффективность влияния различных ионов на физико-химические процессы в живом организме, выяснить явление суммации в центральной нервной системе (ЦНС). Наибольшую известность И. М. Сеченов получил после открытия процесса торможения в ЦНС. После издания в 1863 г. работы И. М. Сеченова «Рефлексы головного мозга» в физиологические основы введено понятие психической деятельности. Таким образом, был сформирован новый взгляд на единство физических и психических основ человека.
На развитие физиологии большое влияние оказали работы И. П. Павлова (1849-1936). Он создал учение о высшей нервной деятельности человека и животных. Исследуя регуляцию и саморегуляцию кровообращения, он установил наличие специальных нервов, из которых одни усиливают, другие задерживают, а третьи изменяют силу сердечных сокращений без изменения их частоты. Одновременно с этим И. П. Павлов изучал и физиологию пищеварения. Разработав и применив на практике ряд специальных хирургических методик, он создал новую физиологию пищеварения. Изучая динамику пищеварения, показал ее способность приспосабливаться к возбудительной секреции при употреблении различной пищи. Его книга «Лекции о работе главных пищеварительных желез» стала руководством для физиологов всего мира. За работу в области физиологии пищеварения в 1904 г. И. П. Павлову присудили Нобелевскую премию. Открытие им условного рефлекса позволило продолжить изучение психических процессов, которые лежат в основе поведения животных и человека. Результаты многолетних исследований И. П. Павлова явились основой для создания учения о высшей нервной деятельности, в соответствии с которым она осуществляется высшими отделами нервной системы и регулирует взаимоотношения организма с окружающей средой.
Значительный вклад в развитие анатомии и физиологии внесли и ученые Беларуси. Открытие в 1775 г. в Гродно медицинской академии, которую возглавил профессор анатомии Ж. Э. Жилибер (1741-1814), способствовало преподаванию анатомии и других медицинских дисциплин в Беларуси. При академии были созданы анатомический театр и музей, библиотека, в которой находилось много книг по медицине.
Значительный вклад в развитие физиологии внес уроженец Гродно Август Бекю (1769-1824) - первый профессор самостоятельной кафедры физиологии Виленского университета.
М. Гомолицкий (1791-1861), который родился в Слонимском уезде, с 1819 по 1827 г. возглавлял кафедру физиологии Виленского университета. Он широко проводил эксперименты на животных, занимался проблемами переливания крови. Его докторская диссертация была посвящена экспериментальному изучению физиологии.
С. Б. Юндзилл, уроженец Лидского уезда, профессор кафедры естественных наук Виленского университета, продолжал начатые Ж. Э. Жилибером исследования, издал учебник по физиологии. С. Б. Юндзилл считал, что жизнь организмов находится в постоянном движении и связи с внешней средой, «без которых невозможно существование самих организмов». Тем самым он приблизился к положению об эволюционном развитиии живой природы.
Я. О. Цибульский (1854-1919) впервые выделил в 1893- 1896 гг. активный экстракт надпочечников, что в дальнейшем позволило получить гормоны этой железы внутренней секреции в чистом виде.
Развитие анатомической науки в Беларуси тесно связано с открытием в 1921 г. медицинского факультета в Белорусском государственном университете. Основателем белорусской школы анатомов является профессор С. И. Лебед-кин, который возглавлял кафедру анатомии Минского медицинского института с 1922 по 1934 г. Главным направлением его исследований были изучение теоретических основ анатомии, определение взаимоотношений между формой и функцией, а также выяснение филогенетического развития органов человека. Свои исследования он обобщил в монографии «Биогенетический закон и теория рекапитуляции», изданной в Минске в 1936 г. Вопросам развития периферической нервной системы и реиннервации внутренних органов посвящены исследования известного ученого Д. М. Голуба, академика АН БССР, который возглавлял кафедру анатомии МГМИ с 1934 по 1975 г. За цикл фундаментальных работ по развитию вегетативной нервной системы и реиннервации внутренних органов Д. М. Голубу в 1973 г. присуждена Государственная премия СССР.
Последние два десятилетия плодотворно разрабатывает идеи С. И. Лебедкина и Д. М. Голуба профессор П. И. Лобко. Основной научной проблемой коллектива, который он возглавляет, является изучение теоретических аспектов и закономерностей развития вегетативных узлов, стволов и сплетений в эмбриогенезе человека и животных. Установлен ряд общих закономерностей формирования узлового компонента вегетативных нервных сплетений, экстра- и интраорганных нервных узлов и др. За учебное пособие «Вегетативная нервная система» (атлас) (1988) П. И. Лоб-ко, С. Д. Денисову и П. Г. Пивченко в 1994 г. присуждена Государственная премия Республики Беларусь.
Целенаправленные исследования по физиологии человека связаны с созданием в 1921 г. соответствующей кафедры в Белорусском государственном университете и в 1930 г. в МГМИ. Здесь изучались вопросы кровообращения, нервные механизмы регуляции функций сердечно-сосудистой системы (И. А. Ветохин), вопросы физиологии и патологии сердца (Г. М. Прусс и др.), компенсаторные механизмы в деятельности сердечно-сосудистой системы (А. Ю. Броновицкий, А. А. Кривчик), кибернетические методы регуляции кровообращения в норме и патологии (Г. И. Сидоренко), функции инсулярного аппарата (Г. Г. Гацко).
Систематические физиологические исследования развернулись в 1953 г. в Институте физиологии АНБССР, где было взято оригинальное направление на изучение вегетативной нервной системы.
Значительный вклад в развитие физиологии на Беларуси внес академик И. А. Булыгин. Свои исследования он посвятил изучению спинного и головного мозга, вегетативной нервной системы. За монографии «Исследования закономерностей и механизмов интерорецептивных рефлексов» (1959), «Афферентные пути интерорецептивных рефлексов» (1966), «Цепные и канальцевые нейрогуморальные механизмы висцеральных рефлекторных реакций» (1970) И. А. Булыгину в 1972 г. присуждена Государственная премия БССР, а за цикл работ, опубликованных в 1964-1976 гг. «Новые принципы организации вегетативных ганглиев», в 1978 г. Государственная премия СССР.
Научные исследования академика Н. И. Аринчина связаны с физиологией и патологией кровообращения, сравнительной и эволюционной геронтологией. Он разработал новые методы и аппараты для комплексного исследования сердечно-сосудистой системы.
Физиология XX в. характеризуется значительными достижениями в области раскрытия деятельности органов, систем, организма в целом. Особенностью современной физиологии является глубокий аналитический подход к исследованиям мембранных, клеточных процессов, описанию биофизических аспектов возбуждения и торможения. Знания о количественных взаимоотношениях между различными процессами дают возможность осуществить их математическое моделирование, выяснить те или иные нарушения в живом организме.

Методы исследований

Для изучения строения тела человека и его функций пользуются различными методами исследований. Для изучения морфологических особенностей человека выделяют две группы методов. Первая группа применяется для изучения строения организма человека на трупном материале, а вторая - на живом человеке.
В первую группу входят:
1) метод рассечения с помощью простых инструментов (скальпель, пинцет, пила и др.) - позволяет изучать. строение и топографию органов;
2) метод вымачивания трупов в воде или в специальной жидкости продолжительное время для выделения скелета, отдельных костей для изучения их строения;
3) метод распиливания замороженных трупов - разработан Н. И. Пироговым, позволяет изучать взаимоотношения органов в отдельно взятой части тела;
4) метод коррозии - применяется для изучения кровеносных сосудов и других трубчатых образований во внутренних органах путем заполнения их полостей затвердевающими веществами (жидкий металл, пластмассы), а затем разрушением тканей органов при помощи сильных кислот и щелочей, после чего остается слепок от налитых образований;
5) инъекционный метод - заключается в введении в органы, имеющие полости, красящих веществ с последующим осветлением паренхимы органов глицерином, метиловым спиртом и др. Широко применяется для исследования кровеносной и лимфатической систем, бронхов, легких и др.;
6) микроскопический метод - используют для изучения структуры органов при помощи приборов, дающих увеличенное изображение.

Ко второй группе относятся:
1) рентгенологический метод и его модификации (рентгеноскопия, рентгенография, ангиография, лимфография, рентгенокимография и др.) - позволяет изучать структуру органов, их топографию на живом человеке в разные периоды его жизни;
2) соматоскопический (визуальный осмотр) метод изучения тела человека и его частей - используют для определения формы грудной клетки, степени развития отдельных групп мышц, искривления позвоночника, конституции тела и др.;
3) антропометрический метод - изучает тело человека и его части путем измерения, определения пропорции тела, соотношение мышечной, костной и жировой тканей, степень подвижности суставов и др.;
4) эндоскопический метод - дает возможность исследовать на живом человеке с помощью световодной техники внутреннюю поверхность пищеварительной и дыхательной систем, полости сердца и сосудов, мочеполовой аппарат.
В современной анатомии используются новые методы исследования, такие как компьютерная томография, ультразвуковая эхолокация, стереофотограмметрия, ядерно-магнитный резонанс и др.
В свою очередь из анатомии выделились гистология - учение о тканях и цитология - наука о строении и функции клетки.
Для исследования физиологических процессов обычно использовали экспериментальные методы.
На ранних этапах развития физиологии применялся метод экстирпации (удаления) органа или его части с последующим наблюдением и регистрацией полученных показателей.
Фистульный метод основан на введении в полый орган (желудок, желчный пузырь, кишечник) металлической или пластмассовой трубки и закреплении ее на коже. При помощи этого метода определяют секреторную функцию органов.
Метод катетеризации применяется для изучения и регистрации процессов, которые происходят в протоках экзокринных желез, в кровеносных сосудах, сердце. При помощи тонких синтетических трубок - катетеров - вводят различные лекарственные средства.
Метод денервации основан на перерезании нервных волокон, иннервирующих орган, с целью установить зависимость функции органа от воздействия нервной системы. Для возбуждения деятельности органа используют электрический или химический вид раздражения.
В последние десятилетия широкое применение в физиологических исследованиях нашли инструментальные методы (электрокардиография, электроэнцефалография, регистрация активности нервной системы путем вживления макро- и микроэлементов и др.).
В зависимости от формы проведения физиологический эксперимент делится на острый, хронический и в условиях изолированного органа.
Острый эксперимент предназначен для проведения искусственной изоляции органов и тканей, стимуляции различных нервов, регистрации электрических потенциалов, введения лекарств и др.
Хронический эксперимент применяется в виде целенаправленных хирургических операций (наложение фистул, нервнососудистых анастомозов, пересадка разных органов, вживление электродов и др.).
Функцию органа можно изучать не только в целом организме, но и изолировано от него. В таком случае органу создают все необходимые условия для его жизнедеятельности, в том числе подачу питательных растворов в сосуды изолированного органа (метод перфузии).
Применение компьютерной техники в проведении физиологического эксперимента значительно изменило его технику, способы регистрации процессов и обработку полученных результатов.

Клетки и ткани

Человеческий организм – слагаемое элементов, которые слаженно действуют, чтобы эффективно выполнять все жизненные функции.


Клетки

Клетка - это структурно-функциональная единица живого организма, способная к делению и обмену с окружающей средой. Она осуществляет передачу генетической информации путем самовоспроизведения.
Клетки очень разнообразны по строению, функции, форме, размерам (рис. 1). Последние колеблются от 5 до 200 мкм. Самыми крупными в организме человека являются яйцеклетка и нервная клетка, а самыми маленькими - лимфоциты крови. По форме клетки бывают шаровидные, веретеновидные, плоские, кубические, призматические и др. Некоторые клетки вместе с отростками достигают длины до 1,5 м и более (например, нейроны).

Рис. 1. Формы клеток:
1 - нервная; 2 - эпителиальная; 3 - соединительнотканная; 4 - гладкая мышечная; 5- эритроцит; 6- сперматозоид; 7-яйцеклетка

Каждая клетка имеет сложное строение и представляет собой систему биополимеров, содержит ядро, цитоплазму и находящиеся в ней органеллы (рис. 2). От внешней среды клетка отграничивается клеточной оболочкой - плазмалеммой (толщина 9-10 мм), которая осуществляет транспорт необходимых веществ в клетку, и наоборот, взаимодействует с соседними клетками и межклеточным веществом. Внутри клетки находится ядро, в котором происходит синтез белка, оно хранит генетическую информацию в виде ДНК (дезоксирибонуклеиновая кислота). Ядро может иметь округлую или овоидную форму, но в плоских клетках оно несколько сплющенное, а в лейкоцитах палочковидное или бобовидное. В эритроцитах и тромбоцитах оно отсутствует. Сверху ядро покрыто ядерной оболочкой, которая представлена внешней и внутренней мембраной. В ядре находится нуклеоплазма, которая представляет собой гелеобразное вещество и содержит хроматин и ядрышко.

Рис. 2. Схема ультрамикроскопического строения клетки
(по М. Р. Сапину, Г. Л. Билич, 1989):
1 - цитолемма (плазматическая мембрана); 2 - пиноцитозные пузырьки; 3 - центросома (клеточный центр, цитоцентр); 4 - гиалоплазма; 5 - эндоплазматическая сеть (а - мембраны эндоплазматической сети, б - рибосомы); 6- ядро; 7- связь перинуклеарного пространства с полостями эндоплазматической сети; 8 - ядерные поры; 9 - ядрышко; 10 - внутриклеточный сетчатый аппарат (комплекс Гольджи); 11- секреторные вакуоли; 12- митохондрии; 13 - лизосомы; 14-три последовательные стадии фагоцитоза; 15 - связь клеточной оболочки (цитолеммы) с мембранами эндоплазматической сети

Ядро окружает цитоплазма, в состав которой входят ги-алоплазма, органеллы и включения.
Гиалоплазма - это основное вещество цитоплазмы, она участвует в обменных процессах клетки, содержит белки, полисахариды, нуклеиновую кислоту и др.
Постоянные части клетки, которые имеют определенную структуру и выполняют биохимические функции, называются органеллами. К ним относятся клеточный центр, митохондрии, комплекс Гольджи, эндоплазматическая (цитоплазматическая) сеть.
Клеточный центр обычно находится около ядра или комплекса Гольджи, состоит из двух плотных образований - центриолей, которые входят в состав веретена движущейся клетки и образуют реснички и жгутики.
Митохондрии имеют форму зерен, нитей, палочек, формируются из двух мембран - внутренней и внешней. Длина митохондрии колеблется от 1 до 15 мкм, диаметр - от 0,2 до 1,0 мкм. Внутренняя мембрана образует складки (кри-сты), в которых располагаются ферменты. В митохондриях происходят расщепление глюкозы, аминокислот, окислении жирных кислот, образование АТФ (аденозинтрифосфорнай кислота) - основного энергетического материала.
Комплекс Гольджи (внутриклеточный сетчатый аппарат) имеет вид пузырьков, пластинок, трубочек, расположенных вокруг ядра. Его функция состоит в транспорте веществ, химической их обработке и выведении за пределы клетки продуктов ее жизнедеятельности.
Эндоплазматическая (цитоплазматическая) сеть формируется из агранулярной (гладкой) и гранулярной (зернистой) сети. Агранулярная Эндоплазматическая сеть образуется преимущественно мелкими цистернами и трубочками диаметром 50-100 нм, которые участвуют в обмене липидов и полисахаридов. Гранулярная Эндоплазматическая сеть состоит из пластинок, трубочек, цистерн, к стенкам которых прилегают мелкие образования - рибосомы, синтезирующие белки.
Цитоплазма также имеет постоянные скопления отдельных веществ, которые называются включениями цитоплазмы и имеют белковую, жировую и пигментную природу.
Клетка как часть многоклеточного организма выполняет основные функции: усвоение поступающих веществ и расщепление их с образованием энергии, необходимой для поддержания жизнедеятельности организма. Клетки обладают также раздражимостью (двигательные реакции) и способны размножаться делением. Деление клеток бывает непрямое (митоз) и редукционное (мейоз).
Митоз - самая распространенная форма клеточного деления. Он состоит из нескольких этапов - профазы, метафазы, анафазы и телофазы. Простое (или прямое) деление клеток - амитоз - встречается редко, в тех случаях, когда клетка делится на равные или неравные части. Мейоз - форма ядерного деления, при котором количество хромосом в оплодотворенной клетке уменьшается вдвое и наблюдается перестройка генного аппарата клетки. Период от одного деления клетки к другому называется ее жизненным циклом.

Ткани

Клетка входит в состав ткани, из которой состоит организм человека и животных.
Ткань - это система клеток и внеклеточных структур, объединенных единством происхождения, строения и функций.
В результате взаимодействия организма с внешней средой, которое сложилось в процессе эволюции, появились четыре вида тканей с определенными функциональными особенностями: эпителиальная, соединительная, мышечная и нервная.
Каждый орган состоит из различных тканей, которые тесно связаны между собой. Например, желудок, кишечник, другие органы состоят из эпителиальной, соединительной, гладкомышечной и нервной тканей.
Соединительная ткань многих органов образует строму, а эпителиальная - паренхиму. Функция пищеварительной системы не может быть выполнена полностью, если нарушена ее мышечная деятельность.
Таким образом, различные ткани, входящие в состав того или иного органа, обеспечивают выполнение главной функции данного органа.


Эпителиальная ткань

Эпителиальная ткань (эпителий) покрывает всю наружную поверхность тела человека и животных, выстилает слизистые оболочки полых внутренних органов (желудок, кишечник, мочевыводящие пути, плевру, перикард, брюшину) и входит в состав желез внутренней секреции. Выделяют покровный (поверхностный) и секреторный (железистый) эпителий. Эпителиальная ткань участвует в обмене веществ между организмом и внешней средой, выполняет защитную функцию (эпителий кожи), функции секреции, всасывания (эпителий кишечника), выделения (эпителий почек), газообмена (эпителий легких), имеет большую регенеративную способность.
В зависимости от количества клеточных слоев и формы отдельных клеток различают эпителий многослойный - ороговевающий и неороговевающий, переходный и однослой-ный - простой столбчатый, простой кубический (плоский), простой сквамозный (мезотелий) (рис. 3).
В плоском эпителии клетки тонкие, уплотненные, содержат мало цитоплазмы, дисковидное ядро находится в центре, край его неровный. Плоский эпителий выстилает альвеолы легких, стенки капилляров, сосудов, полостей сердца, где благодаря своей тонкости осуществляет диффузию различных веществ, снижает трение текущих жидкостей.
Кубический эпителий выстилает протоки многих желез, а также образует канальцы почек, выполняет секреторную функцию.
Цилиндрический эпителий состоит из высоких и узких клеток. Он выстилает желудок, кишечник, желчный пузырь, почечные канальцы, а также входит в состав щитовидной железы.

Рис. 3. Различные виды эпителия:
А - однослойный плоский; Б - однослойный кубический; В - цилиндрический; Г-однослойный реснитчатый; Д-многорадный; Е -многослойный ороговевающий

Клетки реснитчатого эпителия обычно имеют форму цилиндра, с множеством на свободных поверхностях ресничек; выстилает яйцеводы, желудочки головного мозга, спинномозговой канал и дыхательные пути, где обеспечивает транспорт различных веществ.
Многорядный эпителий выстилает мочевыводящие пути, трахею, дыхательные пути и входит в состав слизистой оболочки обонятельных полостей.
Многослойный эпителий состоит из нескольких слоев клеток. Он выстилает наружную поверхность кожи, слизистую оболочку пищевода, внутреннюю поверхность щек, влагалище.
Переходный эпителий находится в тех органах, которые подвергаются сильному растяжению (мочевой пузырь, мочеточник, почечная лоханка). Толщина переходного эпителия препятствует попаданию мочи в окружающие ткани.
Железистый эпителий составляет основную массу тех желез, у которых эпителиальные клетки участвуют в образовании и выделении необходимых организму веществ.
Существуют два типа секреторных клеток - экзокринные и эндокринные. Экзокринные клетки выделяют секрет на свободную поверхность эпителия и через протоки в полость (желудка, кишечника, дыхательных путей и др.). Эндокринными называют железы, секрет (гормон) которых выделяется непосредственно в кровь или лимфу (гипофиз, щитовидная, вилочковая железы, надпочечники).
По строению экзокринные железы могут быть трубчатыми, альвеолярными, трубчато-альвеолярными.

Соединительная ткань

МИРОВАЯ ИСТОРИЯ В ЛИЦАХ. ЭСТОНИЯ.


– русский физиолог, психолог, создатель науки о высшей нервной деятельности.
Лауреат Нобелевской премии (1904) по физиологии и медицине за исследование функций главных пищеварительных желёз.

Связь с Эстонией: отдыхал Ида-Вирумаа


(Heinrich–Friedrich Bidder, Georg Friedrich Karl Heinrich von Bidder)

– российский физиолог и анатом, педагог.
Совместно с А. Волкманом им были выполнены важные исследования симпатической нервной системы; с К. Купфером – исследования спинного мозга.
Именем Биддера названы две анатомические структуры:
Ганглий Биддера, Орган Биддера .
Научные труды касаются анатомии, гистологии и физиологии человека, в особенности, строения ретины, волос, костей и т. д.

Связь с Эстонией: работал, похоронен Дерпт (Тарту)


– русский физиолог, один из первых представителей экспериментального направления физиологии в России.
Cоздатель первой физиологической школы в России.
Проводил эксперименты с перерезкой блуждающих нервов, изучал рефлекс кашля, химизм и механизм желудочного пищеварения и др.
Впервые в России применил микроскоп для исследования клеток крови.
Совместно с Н. И. Пироговым разработал метод внутривенного наркоза (1847).

Связь с Эстонией: учёба Дерпт (Тарту)

(Carl (Karl) Wilhelm von Kupffer)
– немецкий и российский анатом, гистолог и эмбриолог.
Много работ по описательной и сравнительной анатомии.
В гепатологии сделал важное открытие (1876) – в печени обнаружил и описал особые клетки, которые захватывают из крови чужеродные элементы (микробы) и яды (токсины), обезвреживают их, и тем самым очищают печень. Эти клетки «Sternzellen» (звёздчатые клетки) названы его именем – клетки Купфера.
Вместе со своим педагогом Ф. Биддером стал первым исследователем, описавшим строение спинного мозга.

Связь с Эстонией: учёба, работал Дерпт (Тарту)

(Martin Heinrich Rathke)
– немецкий физиолог, анатом и эмбриолог, патолог, один из основателей современной эмбриологии и сравнительной анатомии.
В 1825 году доказал, что ранняя эмбриональная стадия развития едина для всех классов позвоночных.
Ратке принадлежит открытие «жабр» (при рассматривании жаберных дуг) у эмбрионов позвоночных (птиц).
В его честь названа анатомическая структура Ратке карман – Rathke"s pouch , или гипофизарный карман.

Связь с Эстонией: работал Дерпт (Тарту)

(Ernst Reissner)
– российский анатом, сделавший ряд открытий, которые увековечили его имя.
Занимался изучением микроскопической анатомии органа слуха и равновесия. Выполнил исследования формирования внутреннего уха, изучая эмбрионы птиц и животных, что позволило ему установить процесс формирования лабиринта внутреннего уха у людей. В его честь названы три анатомические структуры:
мембрана Рейсснера (Membrana vestibularis Reissneri); волокно Рейсснера; Рейсснера проток.

Связь с Эстонией: учёба, работал Дерпт (Тарту)


(Hermann Adolf Alexander Schmidt)

– выдающийся русский физиолог, автор ферментативной теории свертывания крови.
Главные исследования посвящены проблемам гематологии (дыхательная функция крови, окислительные процессы, красящее вещество крови, кристаллизация и др.).
Работая над проблемой свёртывания крови, сделал капитальнейшее открытие, дав разгадку этого процесса в ферментативной теории свёртывания крови (1863-1864).
Им был выделен из сыворотки крови «фибрин–фермент» – тромбин . Исследовал роль лейкоцитов, клеточных белков и других веществ в свёртывании крови.
Концепция Шмидта об активации факторов свертывания крови и превращении неактивных форм в активные является основой современной каскадной теории свертывания крови.

Связь с Эстонией: родина Cааремаа

Густав БУНГЕ, Густав Александрович Бунге
(Gustav von Bunge, Gustav Piers Alexander von Bunge)

– русский и швейцарский физиолог, биолог–химик.
Исследования состава крови и состава молока у разных животных, разработка вопросов о минеральных веществах в питании больных ставят его имя в ряд крупнейших биологов–химиков. Его научные работы имеют большое практическое значение.
Установил неорганический состав крови млекопитающих, близкий к составу океанической воды, и предположил, что жизнь зародилась в океане (1898).
О ценности материнского молока для младенцев: всем детёнышам млекопитающих необходимо молоко, но именно молоко матери, при этом питание исключительно молоком для младенца с 7-8 месяцев уже недостаточно, поскольку молоко лишено железа, необходимого для синтеза гемоглобина. Учёный предложил «подкармливать» здоровый организм теми соединениями железа, которые содержатся в пище.
Создал школу, занимавшуюся исследованием ценности пищевых продуктов и их влияния на организм.
Наряду с научными исследованиями о действии алкоголя, публично выступал за полное воздержание от алкоголя (с 1885 г.).

Связь с Эстонией: родина Дерпт (Тарту)

; Август Степанович Раубер
(August Antinous Rauber)

– немецкий и российский анатом и гистолог, эмбриолог, антрополог, педагог.
Организатор Учебного анатомического музея в Дерптском университете (1890).
Автор 6–итомного учебного пособия «Руководство анатомии человека» (1910-1914) и классической работы по проводящим нервным путям.
Изучал строение и механические свойства костей, спинномозговые и черепные нервы и узлы, строение головной части симпатического ствола.
В его честь названы несколько анатомических структур:
Артерия Раубера (arteria coccygea), Вена Раубера (vena corporis pineale), Печёночный канатик Раубера (arteria hepatica propria) и др.
В конце ХIХ века А. Раубер предположил, что дети, растущие в полной изоляции, приобретают «dementia ex separatione» – «слабоумие от одиночества».

Связь с Эстонией: работал, похоронен Дерпт (Тарту)

САМСОН–ФОН ГИММЕЛЬШЕРНА Гвидо Карлович (Гвидо–Герман Карлович)
(Hermann Gideon / Guido von Samson–Himmelstjerna)

– военный врач, физиолог, анатом и патолог, профессор судебной медицины.
Имел обширные знания и практику в области патологической анатомии.
Из всего комплекса морфологических диагностических признаков, характерных при развитии смертельной гипотермии (переохлаждении), весьма значимым является наполненность мочевого пузыря, на это впервые (1852) указал Гвидо Карлович.
При экспертизе трупа учитывается Самсон–Гиммельштирна (Samson–Himmelstirn) признак – переполнение мочевого пузыря.

Связь с Эстонией: родина Пылвамаа

ГИД ДОСУГА.
ТАЛЛИНН

Для понимания состояния и перспектив развития любой науки, в том числе анатомии, необходимо знать основные этапы ее становления.

История анатомии , являющаяся частью истории медицины, - это история борьбы материалистических представлений о строении тела человека с идеалистическими и догматическими. Стремление получить новые, более точные сведения о строении тела человека, познать «самого себя» в течение многих веков встречало сопротивление со стороны реакционных светских властей и церкви.

Истоки анатомии уходят в доисторические времена. Наскальные рисунки эпохи палеолита свидетельствуют о том, что первобытные охотники уже знали о положении жизненно важных органов (сердце, печень). Упоминания о сердце, печени, легких и других органах тела человека содержатся в древней китайской книге «Нейцзин» (XI-VII вв. до н.э.). В индийской книге «Аюрведа» («Знание жизни», IX-III вв. до н.э.) имеются сведения о мышцах, нервах.

Значительную роль в развитии анатомии сыграли успехи, достигнутые в Древнем Египте в связи с культом бальзамирования тел умерших. Ценные данные в области анатомии были получены в Античной Греции. Величайший врач древности Гиппократ (460-377 гг. до н.э.), которого называют отцом медицины, сформулировал учение о четырех основных типах телосложения и темперамента, описал некоторые кости крыши черепа. Аристотель (384-322 гг. до н.э.) различал у животных, которых он вскрывал, сухожилия и нервы, кости и хрящи. Ему принадлежит термин «аорта». Первыми в Древней Греции производили вскрытия трупов людей Герофил (род. ок. 304 г. до н.э.) и Эразистрат (300-250 гг. до н.э.). Герофил (Александрийская школа) описал некоторые из черепных нервов, их выход из головного мозга, оболочки мозга, синусы твердой оболочки головного мозга, двенадцатиперстную кишку, а также оболочки и стекловидное тело глазного яблока, лимфатические сосуды брыжейки, тонкой кишки. Эразистрат (Книдосская школа, к которой принадлежал Аристотель) уточнил строение сердца, описал его клапаны, различал кровеносные сосуды, выделял двигательные и чувствительные нервы.

Выдающийся врач и энциклопедист древнего мира Клавдий Гален (131-201) описал 7 (из 12) пар черепных нервов, соединительную ткань и нервы в мышцах, кровеносные сосуды в некоторых органах, надкостницу, связки, а также обобщил имевшиеся до него сведения по анатомии. Он пытался описать функции органов. Полученные при вскрытии животных (свиней, собак, обезьян, львов) факты без должных оговорок Гален переносил на человека, что было ошибкой (трупы людей в Древнем Риме, как и в Античной Греции, вскрывать запрещалось). Гален рассматривал строение живых существ (человека) как «предначертанное свыше», внеся в медицину (анатомию)
принцип телеологии (от греч. telos - цель). Не случайно поэтому труды Галена в течение многих веков пользовались покровительством церкви и считались непогрешимыми.

В последующие века было сделано немало анатомических открытий. Факты накапливались, но не обобщались. Эпоха раннего феодализма, господство догматизма не способствовали прогрессу науки, особенно в странах Европы. Этот период знаменуется развитием культуры народов Востока, достижениями в области математики, астрономии, химии. На Востоке также запрещалось вскрывать трупы, поэтому анатомию там изучали по книгам. На арабский язык переводились труды Гиппократа, Аристотеля, Галена . Известны имена Аль-Рази (Разес, 850-932 гг.) - основателя Багдадской больницы и при ней Медицинской школы, Ибн-Аббаса (род. в 997 г.), высказавшего для того времени смелую мысль относительно непогрешимости авторитета древних.

Величайший мыслитель и врач Востока Абу Али Ибн Сина (Авиценна, 980-1037 гг.) написал «Канон врачебной науки», в котором содержались сведения по анатомии, созвучные представлениям Галена. «Канон» был переведен на латинский язык и после изобретения книгопечатания переиздавался более 30 раз. Во втором тысячелетии развитие городов, торговли, культуры послужило новым толчком к развитию медицины. Появляются медицинские школы. Одной из первых была открыта школа в Салерно, близ Неаполя, где раз в 5 лет разрешалось производить вскрытие трупов людей. В этот период открываются первые университеты.

Начиная с XIII в. в университетах выделяются медицинские факультеты . В XIV-XV вв. в них для демонстрации студентам стали вскрывать 1-2 трупа в год. В 1326 г. Мондино да Люцци (1275-1327), вскрывший два женских трупа, написал учебник по анатомии .

Особенно большой вклад в анатомию внесли Леонардо да Винчи и Андрей Везалий . Выдающийся итальянский ученый и художник эпохи Возрождения Леонардо да Винчи (1452-1519) вскрыл 30 трупов людей . Он сделал многочисленные зарисовки костей, мышц, сердца и других органов и составил письменные пояснения к этим рисункам; изучил формы и пропорции тела человека, предложил классификацию мышц, объяснил их функцию с точки зрения законов механики.

Основоположником научной анатомии является профессор Падуанского университета Андрей Везалий (1514-1564), который на основании собственных наблюдений, сделанных при вскрытии трупов, написал труд «О строении человеческого тела» (De Humani coiporis fabrica) , изданный в Базеле в 1543 г. Везалий систематически и довольно точно описал анатомию человека, указал на анатомические ошибки Галена. Исследования и новаторский труд Везалия предопределили дальнейшее развитие анатомии. Его учениками и последователями в XVI-XVII вв. было сделано немало анатомических открытий, уточнений, исправлений. Были обстоятельно описаны многие
органы тела человека.

В XVI-XVII вв. производились публичные вскрытия трупов человека, для чего создавались специальные помещения - анатомические театры (например, в Падуе в 1594 г., в Болонье в
1637 г.). Голландский анатом Ф. Рюиш (1638-1731) усовершенствовал метод бальзамирования трупов, производил инъекцию цветных масс в кровеносные сосуды, создал большую для
того времени коллекцию анатомических препаратов , в том числе препаратов, демонстрирующих пороки развития и аномалии. Петр I во время одного из посещений Голландии приобрел
у Ф.Рюиша более 1500 препаратов для знаменитой петербургской «Кунсткамеры».

Анатомические открытия послужили основой для исследований в области физиологии. Испанский врач Мигель Сереет(1511 - 1553) , а через 6 лет ученик Везалия Р. Коломбо (1516-1559) высказали предположение о переходе крови из правой половины сердца в левую через легочные сосуды. В 1628 г. вышла книга английского врача Уильяма Гарвея (1578-1657), в которой он привел доказательства движения крови по сосудам большого круга кровообращения . В этом же году вышел в свет труд Каспаро Азелли (1591 - 1626), описавшего брыжеечные лимфатические («млечные») сосуды.

Анатомия в XVII-XIX вв. обогатилась новыми фактами. Начало микроскопической анатомии положил профессор университета в Болонье М. Мальпиги(1628-1694), открывший в 1661 г. с помощью микроскопа кровеносные капилляры. Появились книги и атласы с рисунками по анатомии человека. В 1685 г. в Амстердаме был издан атлас голландского анатома
Готфрида Бидлоо(1649-1713) «Анатомия человеческого тела» . Атлас состоял из 105 таблиц-рисунков с натуральных препаратов. Он был переведен на русский язык и служил пособием в медицинской школе при Московском госпитале. Реформатор преподавания анатомии профессор из Лейдена (Голландия) Б. Альбинус (1697-1770) в 1726 г. опубликовал труд по анатомии костей тела человека, в 1736 г. - работу о мышцах, а позже - таблицы (рисунки) костей и мышц, лимфатических сосудов и непарной вены. Развитию лимфологии способствовали труды итальянского анатома П. Масканьи (1755-1815) , особенно «История и иконография лимфатических сосудов» (1787) . Большое значение для развития сравнительной анатомии имели работы Ж. Кювье (1769-1832). Значительную роль в развитии анатомии сыграл труд К. Биша(1771-1802) «Общая анатомия в ее приложении к физиологии и медицине», в котором изложено учение о тканях, органах и системах. Основы эмбриологии заложил К. М. Бэр (1792-1876), открывший
яйцеклетку человека и описавший развитие ряда органов. Клеточную теорию создал Т. Шванн (1810-1882), который установил принцип единообразия в строении животного организма.

В конце XIX-начале XX в. вышел в свет ряд руководств и атласов по анатомии человека, созданных К. Тольдом (1840-1920), А. Раубером (1841-1917), В.Шпальтегольцем (1861 - 1940), Г. Браусом (1868-1953) и др.

Во второй половине XIX в. было сделано несколько великих открытий. Грегор Мендель (1834-1884) объяснил законы наследственности. А. Вейсман (1834-1914) предсказал существование носителей наследственности - хромосом (ученый назвал их идантами), высказал предположение о линейном расположении единиц наследственности в хромосомах. Э. ван Бенден Бовери (1846-1910) и О. Гертвиг (1849-1922) описали мейоз. В то же время Э.ван Бенден Бовери доказал, что число хромосом в половых клетках в 2 раза меньше, чем в соматических. В. Флемминг (1834-1905) одновременно с киевским гистологом П. И. Перемежко (1833-1893) описал митоз. Т. Морган (1866-1945) в начале XX в. доказал линейное расположение генов в хромосомах.

Конец XIX в. ознаменовался еще двумя великими открытиями, которые сыграли огромную роль в развитии анатомии. Открытие в 1895 г. К. Рентгеном (1845-1923) Х-лучей привело к созданию принципиально нового раздела анатомии - анатомии живого человека, рентгеноанатомии. И. И. Мечников (1845-1916) открыл фагоцитоз, положив начало изучению иммунной системы.

В XX в. анатомия достигла новых больших успехов. Это относится в первую очередь к функциональной анатомии, гистологии, цитологии. Основополагающие работы были проведены
в области функциональной морфологии нервной системы. К. Гольджи (1843-1926) разработал оригинальный метод импрегнации тканей солями серебра, открыл внутриклеточный
сетчатый аппарат, названный его именем. Используя метод Гольджи, С. Рамон-и-Кахаль (1852-1934) сформулировал нейронную теорию, согласно которой каждый нейрон является структурно и функционально независимой единицей, открыл динамическую поляризацию нейрона.

Английский ученый Дж. Ленгли (1852-1925) описал общий план строения автономной нервной системы, выделил в вегетативной нервной системе наряду с симпатической парасимпатическую часть. К. Монаков (1853-1930), П. Флексинг (1847-1929) детально изучили анатомию мозга. О. Леви (1873-1961), Д. Экклс (род. в 1903 г.) исследовали структуру и функцию синапсов. О.Леви обнаружил медиаторы парасимпатической (ацетилхолин) и симпатической (адреналин) частей
вегетативной нервной системы.

Д. Эрлингер (1847) и Г. С. Гассер (1888-1903) открыли сложную структуру смешанных нервов, обнаружив в них три типа волокон, различающихся по своим морфофункциональным особенностям. В. Xесс (1881 - 1973) изучил центры гипоталамуса, доказал координирующую роль гипоталамуса в деятельности внутренних органов. Г. Шпеман (1869-1941) установил основные механизмы эмбрионального развития, доказал, что формообразовательные процессы являются результатом взаимного влияния частей развивающегося эмбриона.

А. Беннингофф (1890-1953) ввел понятие о функциональных системах. В. Гис младший (1863-1934), Л. Ашофф (1866-1942), А. Кис (1866-1955), М. Флек (1900-1921), С. Тавара (1873-1938) разработали учение о проводящей системе сердца. А. Крог (1874-1949) изучил строение гемокапилляров и механизм регуляции их просвета.

Успехи цитологии в XX в. связаны с разработкой принципиально новых методов исследования: культуры клеток, электронной микроскопии, дифференциального центрифугирования и
авторадиографии. А. Клод (1899-1983) в 30-х годах разработал метод клеточного фракционирования, с помощью которого добился выделения клеточных органелл; открыл рибосомы; установил, что именно в митохондриях происходят клеточное дыхание и окислительное фосфорилирование с образованием АТФ (аденозинтрифосфорная кислота). В середине 40-х годов А.Клод вместе с К. Портером впервые использовал для изучения клетки электронный микроскоп, сконструированный в 1933 г. Э.Руска. При помощи этого микроскопа была открыта эндоплазматическая сеть.

Д. Э. Паладе (род. в 1912 г.) впервые описал ультраструктуру митохондрий, эндоплазматической сети, рибосом и комплекса Гольджи; разработал экспериментальные методы изучения синтеза белков в живой клетке, предложил и обосновал везикулярную теорию клеточного транспорта веществ, изучил синтез клеточных и внутриклеточных мембран.

К. де Дюв (род. в 1917 г.) усовершенствовал метод дифференциального центрифугирования, открыл лизосомы и пероксисомы, изучил их строение и функции в норме и при различных заболеваниях, а также роль лизосом в процессах старения.

Большие успехи были достигнуты в изучении цитофизиологии поперечнополосатых мышц. А. Сент-Д ьёрди (1893-1986) в конце 30-х годов выделил актин, образующий с миозином комплекс актомиозин, и доказал, что он укорачивается под влиянием АТФ.

Г. Xаслив середине 60-х годов разработал современную теорию мышечного сокращения - скользящих нитей, которая получила признание.



Характеристика основных физиологических свойств возбудимых тканей. Понятие об ионной ассиметрии.

Нервная ткань обладает возбудимостью. Функции возбудимой ткани базируются на 2 основных свойствах: 1-несимметричного расположения потенциалобразующих ионов по отношению к мембране;2- избирательная проницаемость клеточной мембраны. Ионная асимметрия: основными потенциалобразующими ионами яв-ся К и Na. В некоторых тканях таковыми являются Са и CL. Na больше вне клетки, а К- в клетке. Данные ионы стремятся перемещаться через мембрану.Na стремится войти в клетку вдоль конц.градиента, а К выйти вдоль конц.градиента. конц.градиент для Na и Kсохраняют свое направление всегда, и в состоянии покоя, и в состоянии раздражения. 2 .избират.проницаемость мембраны: мембрана возбудимых тканей образована 2 слоем фосфолипидов, пронизанными ионными каналами. Ионные каналы- интегральные белки мембраны, в ряде случаев обладающие воротным механизмом- канал может быть открытым и закрытым. Р группа обращена к воде, гидрофильна. Жирные кислоты липофильны и обращены друг к другу. Проницаемость Na-канала зависит от функц-го состояния возбудимой ткани:1-покой- каналы закрыты; 2- при действии раздражителя канал на короткое время открывается. К-каналы всегда открыты в независимости от функц-го состояния возбудимой ткани. Время от времени мембрану пронизывают другие белки- натрий-калиевые насосы. У этих белков имеется 3 центра связывания: для натрия, калия, и АТФ.

Строение скелетной мышцы

состоят из мышечных волокон, каждое мышечное волокно сост.миофибрилл. миофибриллы имеют выраженную полосатую исчерченность. В ней правильно чередуются светлые и темные участки. Темные участки обозначаются как диск А-анизотропные(разные), т.к. они имеют разную оптическую плотность. Светлые участки-дискI-изотропные- имеют одинаковую оптическую плотность. В составе темного участка имеются светлые- зона Н.миофибрилла состоит из более тонких филаментов- протофибрилл. Протофибриллы- сократимые белки мышцы. В мышцах имеются 2 типа протофибрилл- актин и миозин. Актин- белок полимер, имеет конформацию 2нитчатой спирали, время от времени перекрученные. Мономером является глобулярный белок. Длина 1мкм, диаметр 7-7нм. В местах соединения 2 нитей имеются углубления- канавки. В молекулу актина встроены 2 регуляторных белкатропонин и тропомиозин. Миозин-белок полимер, состоит из множестваполипептидных цепей. В составе каждой цепи различают: головку, шейку и хвост. Хвосты всех цепей скручены в виде жгута. Головки располагаются на поверхности этого каната, а между хвостом и головкой располагается подвижная шейка.миозин длиннее и толще актина: длина-1,5мкм, диаметр-14нм. О теории: структуры были изучены хансон и хаскли. Удостоены нобелевской премии в 1962г.. суть теории: при возбуждении мышцы миозин начинает взаимодействовать с актином. Находясь в центре саркомера, миозин шаг за шагом, изменяя положение головки, подтягивает молекулы актина и справа и слева к центру. При этом длина саркомера уменьшается, соответственно уменьшается длина миофибриллы, длина мыш.волокна, но длина актина и миозина не изм-ся.



Механизм мыш.сокращ-ия: медиатор из нервного окончания выделяется на мышцу. В мышце в районе синапса возникает ПД. Деполяризация распространяется вдоль мышечного волокна. Цистерны СПР контактируют с мембраной, поэтому деполяризация мембраны мышечного волокна вызывает изменение проницаемости мембраны СПР: в мембране СПР открываются Са-каналы. Са выходит из цистерн и заполняет пространство с миофибриллой. Сасвязыватся с Са-чувствительными центрами тропонина. Конформациятропонина изменяется.Троонин перестает удерживать электростатическитропомиозин на поверхности актина. Молекулы тропомиозина сваливаются в канавку, открывая центры связывания актина с миозином. Головкка миозина располагается под прямым углом по отношению к актину. На этих головках сейчас АДФ и фосфат. Головки миозина связываются с активными центрами актина. Связь актина и миозина несколько изменяет конформацию миозина, в результате чего фосфаты отсоединяются от головки миозина. Отсоединение вызывает существенное конформационное изменение миозина: происодит переориентация шейки миозина по отношению к головке. Шейки наклоняются к продольной оси миозина. В результате возникает тянущее усилие. Мышца миозин совершает гребковое движение. По завершении движения от головки миозина отсоединяется и АДФ. Утратив АДФ и фосфат, головка прочно связывается с актином. Для того, чтобы отсоединить головку миозина от актина, с головкой миозина связывается АТФ. Конформация головки изменяется, вследствие чего сродство актина и миозина резко снижается. Головка миозина отсоединяетя от актина. Сразу же после этого миозин приобретает атефазную активность и подвергает гидролизу АТФ. Выделяется энергия. Энергия расходуется на разгибание головки миозина.

Газообмен в капиллярах малого круга. Значение рО2 и рСО2 в венозной крови и в легких. Механизмы освобождения СО2 из соединений, в виде которых этот оксид транспортируется кровью. Понятие о кислородной емкости крови.

Газообмен - это транскапиллярный обмен дыхательных газов (СО2 и О2). Осуществляется между венозной кровью и воздухом альвеол, в малом кругу кровообращения, и между артериальной кровью и тканями в большом кругу кровообращения.

Газообмен в капиллярах малого круга.

Значение рО2 и рСО2 в

В легких: Тканях:

рО2 = 103 mmHgpO2 = 40 mmHg

pCO2 = 40 mm Hg pCO2 = 46 mmHg

1. Разрушить соединения, в виде которых СО2 транспортируется в кровь и вывести их.

2. Оксигенировать кровь

1) HHbCO2 – диссоциирует по градиенту давления:

HHbCO2 àHHb + CO2

2) Чем больше Hb сбрасывает СО2, тем легче он связывается с О2 по градиенту давления:

HHb + O2 = HHbO2

В эритроците сейчас находятся следующие вещества:

KHCO3 иHHbO2, которые взаимодействуют друг с другом:

KHCO3 + HHbO2-àKHbO2 + H2CO3

Под действием карбоангидразы:

H2CO3 -àCO2 + H2O

К этому времени мы освободились от двух соединений, транспортируемых СО2 (HHbCO2 иKHCO3)

Нам осталось освободится от NaHCO3 находящийся в плазме крови.

В МКК Н2СО3 ферментативно расщепляется на H2OиCO2, а не спонтанно диссоциирует на Н+ и НСО3-

В малом кругу в крови практически нет иона бикарбоната, поэтому НСО3- дифундирует из плазмы крови в эритроците. В эритроците НСО3- связывается с протоном Н+ чуть –чуть подкисливая кровь образуется Н2СО3 – расщепляется на Н2О и СО2:

HCO3- + H+ àH2CO3 àH2O + CO2

Итак, все три соединения в виде которых СО2 транспортируется в МКК. Это:

KHCO3 – в эритроците

NaHCO3 – в плазме

HHbCO3 – в эритроците

Кислородная емкость крови _ это количество мл О2 транспортируется кровью

КЕК ограниченна содержанием Нb

Hb – 14,2% - количество грНb 100 ml

1 грHb может связываться с 1,34 мл О2 – коэффициент Хюффнера

КЕК = 1,34 * 14=19 об.%

Объемный % - количество мл газов, содержащихся в 100 мл крови.

Этапы развития физиологии. Вклад отечественных ученых в развитие физиологической науки

Год становления физиологии - 1628 г. - вышла книга английского анатома и физиолога У. Гарвея "Учение о движении сердца и крови в организме" - впервые описан большой круг кровообращения. Периоды физиологии:допавловский - 1628-1883 г.; павловский - с 1883 г. - диссертация И. Павлова "Центробежные нервы сердца". Павловский этап базируется на трех основных принципах - организм - это единая система, которая объединяет:различные органы в их сложном взаимодействии между собой, организм - единое целое с окружающей средой; принцип нервизма.Из русских ученых, работающих в XIX веке в области физиологии, следует отметить А. М. Филомафитского, В. А. Басова, Н. А. Миславского, Ф. В. Овсянникова, А. Я. Кулябко, С. П. Боткина и др. Одним из них принадлежат открытия в области физиологии крови и кровообращения, другие изучали функции пищеварения, третьи - дыхания, нервной системы и т. д. Особую роль в области физиологии сыграли ученые И. М. Сеченов и И. П. Павлов.Иван Михайлович Сеченов (1829 - 1905) - основоположник русской физиологии. И. М. Сеченов открыл явления торможения в центральной нервной системе, впервые изучил состав газов крови, выяснил роль и значение гемоглобина в переносе углекислого газа и т. д. Исключительное значение имела книга И. М. Сеченова "Рефлексы головного мозга", вышедшая в 1863 г. В ней впервые высказано положение, что вся деятельность головного мозга носит рефлекторный характер.Иван Петрович Павлов (1849 - 1936) - великий ученый-материалист. Основные труды его посвящены физиологии кровообращения, пищеварения и больших полушарий головного мозга. Исследования И. П. Павлова в области физиологии кровообращения привели к созданию учения о регуляции деятельности сердечно-сосудистой системы. И. П. Павлов установил, что деятельность различных органов пищеварительной системы регулируется нервной системой и зависит от различных явлений внешней среды.В трудах И. П. Павлова нашла блестящее подтверждение высказанная И. М. Сеченовым мысль о рефлекторном характере деятельности органов. Различные раздражения из внешней среды, которые оказывают действие на организм, воспринимаются посредством нервной системы и вызывают изменение деятельности тех или иных органов. Такие ответные реакции организма на раздражение, осуществляемые через нервную систему, носят название рефлексов.Особое значение имеют исследования И. П. Павлова, посвященные изучению функций коры головного мозга. Этими исследованиями было показано, что в основе психической деятельности человека лежат физиологические процессы, протекающие в коре головного мозга.

Похожие публикации