Обо всем на свете

Презентация на тему «Биосинтез белка. Презентация на тему "биосинтез белка " связь малой субъединицы рибосомы с большой

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Биосинтез белков в живой клетке Продолжить формирование знаний об основных процессах метаболизма; охарактеризовать два этапа биосинтеза белка – трансляцию и транскрипцию.

Задачи: Вспомнить значение белков для живого организма. Изучить этапы биосинтеза белков. Решить задачи «Кодирование молекул белков»

Перечислите роль белков в клетке Что такое метаболизм? Что такое ассимиляция?

1), 1, (строительная – липопротеины, каталитическая – пероксидаза, двигательная – миозин, транспортная – гемоглобин, защитная – гамма-глобулин, энергетическая -17,6 кДж/моль, регуляторная – инсулин и другие).

Проблемный вопрос: Каким образом информация о строении молекул белков записана в молекуле ДНК? Как передаётся эта информация из ядра клетки на рибосомы, где происходит синтез белка? Синтез белка происходит в клетке в период роста и развития. Основная роль в определении структуры белка принадлежит ДНК, разные участки которой определяют синтез различных белков. Участок ДНК, определяющий синтез одной молекулы белка, называются геном Ген – участок двойной спирали ДНК. И-РНК – однонитевая молекула. Длина и-РНК в сотни раз короче нити ДНК. Синтез белка идет в два этапа:

БИОСИНТЕЗ- образование органических веществ,происходящее в клетках с помощью ферментов и внутриклеточных структур ДНК---иРНК---белок Транскрипция - в ядре клетки. ДНК → иРНК с участием фермента полимеразы Универсальный способ: рибосомный синтез Раскручивание ДНК

Трансляция - в цитоплазме. Участвуют: иРНК, рибосомы, рРНК, тРНК, свободные аминокислоты, ферменты, АТФ, Мg 2+ .

Для реализации информации используется генетический код. Сущность кода состоит в том, что каждой аминокислоте соответствует участок цепи ДНК из рядом стоящих трёх нуклеотидов – триплетов. (

Избыточность – 64 сочетания кодируют 20 аминокислот. Специфичность – Один триплет соответствует только одной аминокислоте. Универсальность – Код одинаков для всех организмов.

Почти полвека тому назад, в 1953 г., Д. Уотсон и Ф. Крик открыли принцип структурной (молекулярной) организации генного вещества - дезоксирибонуклеиновой кислоты (ДНК)

1 этап-ТРАНСКРИПЦИЯ 2этап-ТРАНСЛЯЦИЯ

Биосинтез белков в живой клетке Почти полвека тому назад, в 1953 г., Д. Уотсон и Ф. Крик открыли принцип структурной (молекулярной) организации генного вещества - дезоксирибонуклеиновой кислоты (ДНК)


По теме: методические разработки, презентации и конспекты

Белки - природные высокомолекулярные вещества Химические свойства белков

Материал урока формирует знания о составе и строении белков как высшей ступени развития вещества....

Методическая разработка урока по теме: «Химические свойства белка. Биологическая роль белков» Методическая цель: реализация профильного изучения темы.Цель урока:1) показат...

Модульный урок по биологии" Состав и строение белков. Функции белков"

Модульная технология позволяет обучающимся самостоятельно работать, общаться и помогать друг другу, оценивать свою работу и своего товарища....

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Синтез белков в клетке Урок для 9 класса

Цель урока: формирование понимания процесса биосинтеза белка Содержание: Теоретическая часть: Введение Генетический код Транскрипция Транспортные РНК Трансляция Практическая часть Контрольный тест EXIT

Введение: Наиболее важный процесс ассимиляции в клетке – синтез присущего ей белка.(очень энергоемкий процесс, берущий энергию от АТФ) , (т. к. в процессе жизни все белки рано или поздно разрушаются, клетка должна непрерывно синтезировать белки для восстановления своих мембран, органоидов и т. п. , а особенно интенсивно синтез белка идет в клетках имеющих определенную функцию – это такие клетки как клетки желез внутренней секреции и т. п.) Многообразие функций белков определяется их первичной структурой. А наследственная информация заключена в последовательности нуклеотидов в молекуле ДНК.

АССИМИЛЯЦИЯ – НАБОР РЕАКЦИЙ БИОЛОГИЧЕССКОГО СИНТЕЗА КЛЕТКИ (ПЛАСТИЧЕССКИЙ ОБМЕН И Т. П.).

Первичная структура- последовательность аминокислот в составе полипептидной цепи.

Ген – участок ДНК в котором содержится информация о первичной структуре одного белка.

Генетический код: Генетический код – соответствие триплетных сочетаний нуклеотидов ДНК к той или иной из 20 аминокислот, входящих в состав белков; универсален для всех живых организмов. В состав ДНК входят 4 азотистых основания:аденин (А) , гуанин(Г) , тимин(Т) , цитозин(Ц) . Очень важное свойство генетического кода – 1 триплет всегда обозначает 1-у единственную аминокислоту

ТРИПЛЕТ – последовательность из 3-х расположенных друг за другом нуклеотидов.

ТРАНСКРИПЦИЯ: Первый этап биосинтеза белка-транскрипция. Транскрипция-это переписывание информации с последовательности нуклеотидов ДНК в последовательность нуклеотидов РНК. В определенном участке ДНК под действием ферментов белки-гистоны отделяются, водородные связи рвутся, и двойная спираль ДНК раскручивается. Одна из цепочек становится матрицей для построения мРНК. Участок ДНК в определенном месте начинает раскручиваться под действием ферментов. ДНК матрица Г Ц А Т Г Г А Ц Г А Т Г Г А Ц Г А Ц Т

А Т Г Г А Ц Г А Ц Т У А Ц Ц У Г Ц У Г А мРНК Водородная связь Сложно-эфирная связь Между азотистыми основаниями ДНК и РНК возникают водородные связи, а между нуклеотидами самой матричной РНК образуются сложно-эфирные связи. Затем на основе матрицы под действием фермента РНК-ПОЛИМЕРАЗЫ из свободных нуклеотидов по принципу комплементарности начинается сборка мРНК.

ТРАНСПОРТНЫЕ РНК: Т. К. в состав белков входят около 20 аминокислот, существует столько же видов тРНК. Строение всех тРНК сходно. Служат для осуществления переноса аминокислотных остатков к матричной РНК

ТРАНСЛЯЦИЯ Второй этап биосинтеза– трансляция. Трансляция – перевод последовательности нуклеотидов в последовательность аминокислот белка. В цитоплазме аминокислоты под строгим контролем ферментов аминоацил-тРНК-синтетаз соединяются с тРНК, образуя аминоацил-тРНК. Это очень видоспецифичные реакции: определенный фермент способен узнавать и связывать с соответствующей тРНК только свою аминокислоту. мРНК А Г У У Ц А У Ц А А Г У а/к а/к а/к У У Г А Ц У У Г Ц

Далее тРНК движется к мРНК и связывается комплементарно своим антикодоном с кодоном мРНК. Затем второй кодон соединяется с комплексом второй аминоацил-тРНК, содержащей свой специфический антикодон. Антикодон – триплет нуклеотидов на верхушке тРНК. Кодон – триплет нуклеотидов на мРНК. мРНК А Г У У Ц А У Ц А А Г У а/к а/к а/к У У Г А Ц У У Г Ц Водородные связи между комплементарными нуклеотидами

После присоединения к мРНК двух тРНК под действием фермента происходит образование пептидной связи между аминокислотами; первая аминокислота перемещается на вторую тРНК, а освободившаяся первая тРНК уходит. После этого рибосома передвигается по нити для того, чтобы поставить на рабочее место следующий кодон. мРНК А Г У У Ц А У Ц А А Г У а/к а/к У У Г А Ц У У Г Ц Пептидная связь а/к

Такое последовательное считывание рибосомой заключенного в мРНК «текста» продолжается до тех пор, пока процесс не доходит до одного из стоп-кодонов (терминальных кодонов). Такими триплетами являются триплеты УАА, УАГ,УГА. Одна молекула мРНК может заключать в себе инструкции для синтеза нескольких полипептидных нитей. Кроме того, большинство молекул мРНК транслируется в белок много раз, так как к одной молекуле мРНК прикрепляется обычно много рибосом. мРНК на рибосомах белок Наконец, ферменты разрушают эту молекулу мРНК, расщепляя ее до отдельных нуклеотидов.

Контрольный тест 1. Матрицей для синтеза молекулы мРНК при транскрипции служит: а) вся молекула ДНК б) полностью одна из цепей молекулы ДНК в) участок одной из цепей ДНК г) в одних случаях одна из цепей молекулы ДНК, в других– вся молекула ДНК. 2. Транскрипция происходит: а) в ядре б) на рибосомах в) в цитоплазме г) на каналах гладкой ЭПС 3. Последовательность нуклеотидов в антикодоне тРНК строго комплементарна: а) триплету, кодирующему белок б) аминокислоте, с которой связана данная тРНК в) последовательности нуклеотидов гена г) кодону мРНК, осуществляющему трансляцию

4. Трансляция в клетке осуществляется: а) в ядре б) на рибосомах в) в цитоплазме г) на каналах гладкой ЭПС 5. При трансляции матрицей для сборки полипептидной цепи белка служат: а) обе цепочки ДНК б) одна из цепей молекулы ДНК в) молекула мРНК г) в одних случаях одна из цепей ДНК, в других– молекула мРНК 6. При биосинтезе белка в клетке энергия АТФ: а) расходуется б) запасается в) не расходуется и не выделяется г) на одних этапах синтеза расходуется, на других– выделяется 7. Исключите лишнее: рибосомы, тРНК, мРНК, аминокислоты, ДНК. 8. Участок молекулы тРНК из трех нуклеотидов, комплементарно связывающийся с определенным участком мРНК по принципу комплементарности называется…

9 . Участок молекулы ДНК, с которым соединяется особый белок- репрессор, регулирующий транскрипцию отдельных генов,--… 10. Последовательность азотистых оснований в молекуле ДНК следующая: АТТААЦГЦТАТ. Какова будет последовательность азотистых оснований в мРНК? а) ТААТТГЦГАТА б) ГЦЦГТТАТЦГЦ в) УААУЦЦГУТУТ г) УААУУГЦГАУА


Слайд 2

Функции белков

  1. Белки
  2. ферменты
  3. транспорт
  4. движение
  5. гормоны
  6. антитела
  7. строительство
  • Слайд 3

    «Жизнь – есть способ существования белковых тел, и этот способ существования состоит по своей

    сути в постоянном самообновлении химических составляющих частей этих тел»Ф. Энгельс

    Слайд 4

    Свойства кода

    • вырожденность (многим аминокислотам соответствует несколько кодонов)
    • специфичность (один триплет кодирует одну аминокислоту)
    • универсальность (код един для всех живых организмов)

    Генетический код и его свойства

    Слайд 5

    Основные этапы биосинтеза белка:(смотри рис. 34 учебника)

  • Слайд 6

    Вещества и структуры клетки, участвующие в биосинтезе белка:

  • Слайд 7

    ДНК матрица и РНК матрица белок

    Слайд 8

    Транскрипция – первый этап биосинтеза

    – Т – А – Ц – Г – А – Г – Ц – Т –

    – А – У – Г – Ц – У – Ц – Г – А –

    • цепь ДНК (матрица)
    • цепь иРНК

    Транскрипция – это реакция матричного синтеза, заключающаяся в считывании информационной РНК генетической информации с ДНК (т.е. это процесс образования иРНК на участке одной цепи ДНК по принципу комплементарности).

    1. ДНК – носитель генетической информации, расположена в ядре. 2.Синтез белка происходит в цитоплазме на рибосомах. 3.Из ядра в цитоплазму информация о структуре белка поступает в виде иРНК. 4. Для синтеза иРНК участок двухцепочечной ДНК раскручивается под действием ферментов, на одной из цепочек (матрице) по принципу комплементарности синтезируется молекула иРНК.

  • Слайд 9

    Трансляция – завершающий этап биосинтеза

    • Схема тРНК: А, Б, В, Г – участки комплементарного соединения, Д – участок соединения с аминокислотой, Е - антикодон
    • Схема синтеза полипептидной цепи на рибосоме
    • На одну иРНК может “сесть" несколько рибосом, тогда одновременно будет синтезироваться несколько молекул
    • белка одной и той же первичной структуры. Такой комплекс называется – полисома.
    • Трансляция - это реакция матричного синтеза, которая заключается в переводе генетического кода с иРНК на белок (т.е. это процесс образования белка на иРНК).
  • 1-бгд 2-агбвд 3-вабдг 4- 2,4,7

    1. Выберите три правильно названных свойства генетического кода. A) Код характерен только для эукариотических клеток и бактерий Б) Код универсален для эукариотических клеток, бактерий и вирусов B) Один триплет кодирует последовательность аминокислот в молеку­ле белка Г) Код вырожден, так аминокислоты могут кодироваться несколькими кодонами Д) Код избыточен. Может кодировать более 20 аминокислот Е) Код характерен только для эукариотических клеток 2. Постройте последовательность реакций биосинтеза белка. A) Снятие информации с ДНК Б) Узнавание антикодоном тРНК своего кодона на иРНК B) Отщепление аминокислоты от тРНК Г) Поступление иРНК на рибосомы Д) Присоединение аминокислоты к белковой цепи с помощью фермента 3. Постройте последовательность реакций трансляции. A) Присоединение аминокислоты к тРНК Б) Начало синтеза полипептидной цепи на рибосоме B) Присоединение иРНК к рибосоме Г) Окончание синтеза белка Д) Удлинение полипептидной цепи 4. Найдите ошибки в приведенном тексте. 1. Генетическая информация заключена в последовательности нуклео-тидов в молекулах нуклеиновых кислот. 2. Она передается от иРНК к ДНК. 3. Генетический код записан на «языке «РНК». 4. Код состоит из четырех нуклеотидов. 5. Почти каждая аминокислота шифруется более чем одним кодоном. 6. Каждый кодон шифрует только одну аминокис­лоту. 7. У каждого живого организма свой генетический код.

    Похожие публикации