Обо всем на свете

Показать что система уравнений имеет единственное решение. Отыскание решений системы линейных уравнений. Линейная алгебра. Запись общего решения однородных и неоднородных систем линейных алгебраических с помощью векторов фундаментальной системы решений

Отыскание решений линейной системы
Портабельные Windows-приложения на сайте Bodrenko.com

§2. Отыскание решений линейной системы

Теорема Кронекера-Капелли устанавливает необходимое и достаточное условие совместности линейной системы, но не дает способа нахождения решений этой системы.
В этом параграфе мы займемся отысканием решений линейной системы (3.1). Сначала мы рассмотрим простейший случай квадратной системы линейных уравнений с отличным от нуля определителем основной матрицы, а затем перейдем к отысканию совокупности всех решений общей линейной системы вида (3.1).
1. Квадратная система линейных уравнений с определителем основной матрицы, отличным от нуля. Пусть дана квадратная система линейных уравнений

с отличным от нуля определителем Δ основной матрицы


Докажем, что такая система имеет, и притом единственное, решение, и найдем это решение. Сначала докажем, что система (3.10) может иметь только одно решение (т. е. докажем единственность решения системы (3.10) в предположении его существования).
Предположим, что существуют какие-либо n чисел х 1 , x 2 ,...,х n такие, что при подстановке этих чисел в систему (3.10) все уравнения этой системы обращаются в тождества (т. е. существует некоторое решение системы (3.10) х 1 , x 2 ,...,х n). Тогда, умножая тождества (3.10) соответственно на алгебраические дополнения A 1j , A 2j ,..., A nj элементов j-ro столбца определителя Δ матрицы (3.11) и складывая затем получающиеся при этом тождества, мы получим (для любого номера j, равного 1, 2,..., n)

Учитывая, что сумма произведений элементов i-го столбца на соответствующие алгебраические дополнения элементов j-ro столбца равна нулю при i ≠ j и равна определителю Δ матрицы (3.11) при i = j (cм. свойство 4° из п. 4 §2 гл. 1), мы получим из последнего равенства

x j Δ = b 1 A 1j + b 2 A 2j + ... + b n A nj . (3.12)

Обозначим символом Δ j (b i ) (или, более кратко, символом Δ j ) определитель, получающийся из определителя Δ основной матрицы (3.11) заменой его j-го столбца столбцом из свободных членов b 1 , b 2 ,...,b n (с сохранением без изменения всех остальных столбцов Δ ).
Заметим, что в правой части (3.12) стоит именно определитель Δ j (b i) (ч тобы убедиться в этом, достаточно записать разложение определителя Δ j (b i) по элементам i-го столбца ), и это равенство принимает вид

Δ x j = Δ j (3.13)

Поскольку определитель Δ матрицы (3.11) отличен от нуля, равенства (3.13) эквивалентны соотношениям

Итак, мы доказали, что если решение х 1 , x 2 ,...,х n системы (3.10) с определителем Δ основной матрицы (3.11), отличным от нуля, существует, то это решение однозначно определяется формулами (3.14) .
Формулы (3.14) называются формулами Крамера .
Еще раз подчеркнем, что формулы Крамера пока получены нами в предположении существования решения и доказывают его единственность.
Остается доказать существование решения системы (3.10). Для э того в силу теоремы Кронекера-Капелли достаточно доказать, что ранг основной матрицы (3.11) равен рангу расширенной матрицы (cуществует и другой способ доказательства существования решения системы (3.10), заключающийся в проверке того, что числа х 1 , x 2 ,...,х n , определяемые формулами Крамера (3.14), обращают в тождества все уравнения системы (3.10))

но это очевидно, ибо в силу соотношения Δ ≠ 0, ранг основной матрицы равен n, а ранг содержащей n строк расширенной матрицы (3.15) больше числа n быть не может и потому равен рангу основной матрицы.
Тем самым полностью доказано, что квадратная система линейных уравнений (3.10) с определителем основной матрицы, отличным от нуля, имеет, и притом единственное, решение, определяемое формулами Крамера (3.14).

Доказанное нами утверждение еще проще устанавливается матричным способом. Для того чтобы сделать это, заменим (как и в п. 1 § 1) систему (3.10) эквивалентным ей матричным уравнением

AX = B, (3.16)

где А - основная матрица системы (3.11), а X и В - столбцы,

первый из которых подлежит определению, а второй задан.
Так как определитель Δ матрицы А отличен от нуля, то существует обратная матрица А -1 (см. п. 7 §2 гл. 1).
Предположим, что существует решение системы (3.10), т.е. существует столбец X, обращающий в тождество матричное уравнение (3.16). Помножая указанное тождество слева на обратную матрицу А -1 будем иметь

А -1 (АХ) =А -1 В. (3.17)

Учтем теперь, что в силу сочетательного свойства произведения трех матриц (см. п. 2 § 1 гл. 1) и в силу соотношения А -1 А = Е, где Е - единичная матрица (см. п. 7 §2 гл. 1), А -1 (АХ) = (А -1 А)Х = ЕХ = X, так что мы получим из (3.17)

X = А -1 В. (3.18)

Развертывая равенство (3.18) и учитывая вид обратной матрицы (cм. формулу A.41) из п. 7 §2 гл. 1), мы и получим для элементов столбца X формулы Крамера.
Итак, мы доказали, что если решение матричного уравнения (3.16) существует, то оно однозначно определяется соотношением (3.18), эквивалентным формулам Крамера.
Легко проверить, что столбец X, определяемый соотношением (3.18), в самом деле является решением матричного уравнения (3.16),
т. е. при подстановке в это уравнение обращает его в тождество. В самом деле, если столбец X определяется равенством (3.18), то АХ = А(А -1 В) = (АА -1)В = ЕВ = В.
Итак, если определитель Δ матрицы А отличен от нуля (т. е. если эта матрица является невырожденной), то существует, и притом единственное, решение матричного уравнения (3.16), определяемое соотношением (3.18), эквивалентным формулам Крамера.
Пример. Найдем решение квадратной системы линейных уравнений

с отличным от нуля определителем основной матрицы

Поскольку

то, в силу формул Крамера, единственное решение рассматриваемой системы имеет вид х 1 = 1, х 2 = 2, x 3 = 3, х 4 = 4.
Основное значение формул Крамера состоит в том, что они дают явное выражение для решения квадратной системы линейных уравнений (с определителем, отличным от нуля) через коэффициенты уравнений и свободные члены. Практическое использование формул Крамера связано с довольно громоздкими вычислениями (для решения системы n уравнений с n неизвестными приходится вычислять (n + 1) определитель n-го порядка). К этому следует добавить, что если коэффициенты уравнений и свободные члены представляют собой лишь приближенные значения каких - либо измеряемых физических величин или округляются в процессе вычислений, то использование формул Крамера может привести к большим ошибкам и в ряде случаев является нецелесообразным.
В §4 гл.4 будет изложен метод регуляризации, принадлежащий А.Н. Тихонову и позволяющий находить решение линейной системы с точностью, соответствующей точности задания матрицы коэффициентов уравнений и столбца свободных членов, а в гл. 6 дается представление о так называемых итерационных методах решения линейных систем, позволяющих решать эти системы при помощи последовательных приближений неизвестных.
В заключении отметим, что в этом пункте мы исключили из рассмотрения случай обращения в нуль определителя Δ основной матрицы системы (3.10). Этот случай будет содержаться в общей теории систем m линейных уравнений с n неизвестными, излагаемой в следующем пункте.
2. Отыскание всех решений общей линейной системы. Рассмотрим теперь общую систему m линейных уравнений с n неизвестными (3.1). Предположим, что эта система совместна и что ранг ее основной и расширенной матриц равен числу r. Не ограничивая общности, мы можем предположить, что базисный минор основной матрицы (3.2) находится в левом верхнем углу этой матрицы (общий случай сводится к этому случаю посредством перестановки в системе (3.1) уравнений и неизвестных).
Тогда первые r строк как основной матрицы (3.2), так и расширенной матрицы (3.8) являются базисными строками этих матриц (т ак как ранги основной и расширенной матриц оба равны r, то базисный минор основной матрицы будет одновременно являться базисным минором и расширенной матрицы), и, по теореме 1.6 о базисном миноре, каждая из строк расширенной матрицы (1.8), начиная с (r + 1)-й строки, является линейной комбинацией п ервых r строк этой матрицы.
В терминах системы (3.1) это означает, что каждое из уравнений этой системы, начиная с (r + 1)-го уравнения, является линейной комбинацией (т. е. следствием) первых r уравнений этой системы (т. е. всякое решение первых г уравнений системы (3.1) обращает в тождества и все последующие уравнения этой системы ).
Таким образом, достаточно найти все решения лишь первых r уравнений системы (3.1). Рассмотрим первые r уравнений системы (3.1), записав их в виде

Если мы придадим неизвестным х r+1 ,...,х n совершенно произвольные значения c r+1 ,...,c n , то система (1.19) превратится в квадратную систему r линейных уравнений для r неизвестных х 1 , x 2 ,...,х r , причем определителем основной матрицы этой системы является отличный от нуля базисный минор матрицы (3.2). В силу результатов предыдущего пункта, эта система (3.19) имеет единственное решение, определяемое формулами Крамера, т. е. для произвольно выбранных c r+1 ,...,c n существует единственная совокупность r чисел c 1 ,...,c r , обращающих в тождества все уравнения системы (3.19) и определяющихся формулами Крамера.
Чтобы записать это единственное решение, договоримся обозначать символом M j (d i) определитель, получающийся из базисного минора М матрицы (3.2) заменой его j-ro столбца столбцом из чисел d 1 , d 2 ,...,d i ,...,d r (с сохранением без изменения всех остальных столбцов М). Тогда, записывая решение системы (3.19) с помощью формул Крамера и пользуясь линейным свойством определителя, мы получим

Формулы (3.20) выражают значения неизвестных x j = c j (j = 1, 2,......, r) через коэффициенты при неизвестных, свободные члены и произвольно заданные параметры с r+1 ,...., с n .
Докажем, что формулы (3.20) содержат любое решение системы (3.1) . В самом деле, пусть c (0) 1 , c (0) 2 ,...,c (0) r , c (0) r+1 , ...,c (0) n - произвольное решение указанной системы. Тогда оно является решением и системы (3.19). Но из системы (3.19) величины c (0) 1 , c (0) 2 ,...,c (0) r , определяются через величины c (0) r+1 , ...,c (0) n однозначно и именно по формулам Крамера (3.20). Таким образом, при с r+1 = c (0) r+1 , ..., с n = c (0) n формулы (3.20) дают нам как раз рассматриваемое решение c (0) 1 , c (0) 2 ,...,c (0) r , c (0) r+1 , ...,c (0) n .
Замечание. Если ранг r основной и расширенной матриц системы (3.1) равен числу неизвестных n, то в этом случае соотношения (3.20) переходят в формулы

определяющие единственное решение системы (3.1). Таким образом, система (3.1) имеет единственное решение (т.е. является определенной) при условии, что ранг r основной и расширенной ее матриц равен числу неизвестных n (и меньше числа уравнений m или равен ему).
Пример. Найдем все решения линейной системы

Нетрудно убедиться в том, что ранг как основной, так и расширенной матрицы этой системы равен двум (т. е. эта система совместна), причем можно считать, что базисный минор М стоит в левом верхнем углу основной матрицы, т. е. . Но тогда, отбрасывая два последних уравнения и задавая произвольно с 3 и с 4 , мы получим систему

x 1 - x 2 = 4 - c 3 + c 4 ,

x 1 + x 2 = 8 - 2c 3 - 3c 4 ,

из которой в силу формул Крамера получаем значения

x 1 = c 1 = 6 - 3/2 c 3 - c 4 , x 2 = c 2 = 2 - 1/2 c 3 - 2c 4 . (3.22)

Таким образом, четыре числа

(6 - 3/2 c 3 - c 4 ,2 - 1/2 c 3 - 2c 4 ,c 3 , c 4) (3.23)

при произвольно заданных значениях с 3 и с 4 образуют решение системы (3.21), причем строка (3.23) содержит все решения этой системы.

3. Свойства совокупности решений однородной системы. Рассмотрим теперь однородную систему m линейных уравнений с n неизвестными (3.7), предполагая, как и выше, что матрица (3.2) имеет ранг, равный r, и что базисный минор М расположен в левом верхнем углу этой матрицы. Поскольку на этот раз все b i равны нулю, вместо формул (3.20) мы получим следующие формулы:

выражающие значения неизвестных x j = c j (j = 1, 2,..., r) через коэффициенты при неизвестных и произвольно заданные значения c r+1 ,...,c n . В силу доказанного в предыдущем пункте формулы (3.24) содержат любое решение однородной системы (3.7) .
Убедимся теперь в том, что совокупность всех решений однородной системы (3.7) образует линейное пространство .
Пусть Х 1 = (x (1) 1 , x (1) 2 ,...,x (1) n) и Х 2 = (x (2) 1 , x (2) 2 ,...,x (2) n) - два произвольных решения однородной системы (3.7), а λ - любое вещественное число. В силу того, что каждое решение однородной системы (3.7) является элементом линейного пространства А n всех упорядоченных совокупностей n чисел, достаточно доказать, что каждая из двух совокупностей

Х 1 + Х 2 = (x (1) 1 + x (2) 1 ,..., x (1) n + x (2) n)

λ Х 1 = (λ x (1) 1 ,...,λ x (1) n)

также является решением однородной системы (3.7).
Рассмотрим любое уравнение системы (3.7), например i-е уравнение, и подставим в это уравнение на место неизвестных элементы указанных совокупностей. Учитывая, что Х 1 и Х 2 - решения однородной системы, будем иметь

а это и означает, что совокупности Х 1 + Х 2 и λ Х 1 являются решениями однородной системы (3.7).
Итак, совокупность всех решений однородной системы (3.7) образует линейное пространство, которое мы обозначим символом R.
Найдем размерность этого пространства R и построим в нем базис.
Докажем, что в предположении о том, что ранг матрицы однородной системы (3.7) равен r, линейное пространство R всех решений однородной системы (3.7) изоморфно линейному пространству А n-r всех упорядоченных совокупностей (n - r) чисел (п ространство А m введено в примере 3 п. 1 § 1 гл. 2).

Поставим в соответствие каждому решению (c 1 ,...,c r , c r+1 ,...,c n) однородной системы (3.7) элемент (c r+1 ,...,c n) пространства А n-r Поскольку числа c r+1 ,...,c n могут быть выбраны произвольно и при каждом выборе с помощью формул (3.24) однозначно определяют решение системы (3.7), то установленное нами соответствие является взаимно однозначным . Далее заметим, что если элементы c (1) r+1 ,...,c (1) n и c (2) r+1 ,...,c (2) n пространства А n-r отвечают элементам (c (1) 1 ,...,c (1) r , c (1) r+1 ,...,c (1) n)и (c (2) 1 ,...,c (2) r , c (2) r+1 ,...,c (2) n) пространства R, то из формул (3.24) сразу же следует, что элементу (c (1) r+1 + c (2) r+1 ,...,c (1) n +c (2) n) отвечает элемент (c (1) 1 + c (2) 1 ,...,c (1) r + c (2) r , c (1) r+1 + c (2) r+1 ,...,c (1) n +c (2) n), а элементу (λ c (1) r+1 ,...,λ c (1) n) при любом вещественном λ отвечает элемент (λ c (1) 1 ,...,λ c (1) r , λ c (1) r+1 ,...,λ c (1) n). Тем самым доказано, что установленное нами соответствие является изоморфизмом.
Итак, линейное пространство R всех решений однородной системы (3.7) с n неизвестными и рангом основной матрицы, равным r, изоморфно пространству А n-r и, стало быть, имеет размерность n - r.
Любая совокупность из (n - r) линейно независимых решений однородной системы (3.7) образует (в силу теоремы 2.5) базис в пространстве R всех решений и называется фундаментальной совокупностью решений однородной системы (3.7).
Для построения фундаментальной совокупности решений можно отправляться от любого базиса пространства А n-r . Отвечающая этому базису совокупность решений системы (3.7), в силу изоморфизма, будет линейно независимой и поэтому будет являться фундаментальной совокупностью решений.
Особо выделяют фундаментальную совокупность решений системы (3.7), отвечающую простейшему базису e 1 = (1, 0, 0,..., 0), е 2 = (1, 1, 0,..., 0), ..., е n-r = (0, 0, 0,..., 1) пространства А n-r и называемую нормальной фундаментальной совокупностью решений однородной системы (3.7).
При сделанных выше предположениях о ранге и расположении базисного минора, в силу формул (3.24), нормальная фундаментальная совокупность решений однородной системы (3.7) имеет вид:

По определению базиса любое решение X однородной системы (3.7) представимо в виде

X= C 1 X 1 + C 2 X 2 + ... + C n-r X n-r , (3.26)

где C 1 , C 2 , ...,C n-r - некоторые постоянные. Поскольку в формуле (3.26) содержится любое решение однородной системы (3.7), то эта формула дает общее решение рассматриваемой однородной системы.
Пример. Рассмотрим однородную систему уравнений:

соответствующую неоднородной системе (3.21), разобранной в примере в конце предыдущего пункта. Там мы выяснили, что ранг r матрицы этой системы равен двум, и взяли в качестве базисного минор, стоящий в левом верхнем углу указанной матрицы.
Повторяя рассуждения, проведенные в конце предыдущего пункта, мы получим вместо формул (3.22) соотношения

c 1 = - 3/2 c 3 - c 4 , c 2 = - 1/2 c 3 - 2c 4 ,

справедливые при произвольно выбранных c 3 и c 4 . С помощью этих соотношений (полагая сначала c 3 =1,c 4 =0, а затем c 3 = 0,c 4 = 1) мы получим нормальную фундаментальную совокупность двух решений системы (3.27):

X 1 = (-3/2,-1/2,1,0), X 2 = (-1,-2, 0,1). (3.28)

где С 1 и С 2 - произвольные постоянные.
В заключение этого пункта установим связь между решениями неоднородной линейной системы (3.1) и соответствующей ей однородной системы (3.7) (c теми же самыми коэффициентами при неизвестных). Докажем следующие два утверждения.
1°. Сумма любого решения неоднородной системы (3.1) с любым решением соответствующей однородной системы (3.7) представляет собой решение системы (3.1).
В самом деле, если c 1 ,...,c n - решение системы (3.1), a d 1 ,...,d n - решение соответствующей ей однородной системы (3.7), то, подставив в любое (например, в i-е) уравнение системы (3.1) на место неизвестных числа c 1 + d 1 ,...,c n + d n , получим

что и требовалось доказать.
2°. Разность двух произвольных решений неоднородной системы (3.1) является решением соответствующей однородной системы (3.7).
В самом деле, если c" 1 ,...,c" n и c" 1 ,...,c" n - два произвольных решения системы (3.1), то, подставив в любое (например, в i-е) уравнение системы (3.7) на место неизвестных числа c" 1 - c" 1 ,...,c" n - c" n получим

что и требовалось доказать.
Из доказанных утверждений вытекает, что, найдя одно решение неоднородной системы (3.1) и складывая его с каждым решением соответствующей однородной системы (3.7), мы получим все решения неоднородной системы (3.1).
Другими словами, сумма частного решения неоднородной системы (3.1) и общего решения соответствующей однородной системы (3.7) дает общее решение неоднородной системы (3.1).
В качестве частного решения неоднородной системы (3.1) естественно взять то его решение (п ри этом предполагается, как и выше, что ранги основной и расширенной матриц системы (3.1) равны r и что базисный минор находится в левом верхнем углу этих матриц)

которое получится, если в формулах (3.20) положить равными нулю все числа c r+1 ,...,c n . Складывая это частное решение с общим решением (3.26) соответствующей однородной системы, мы получим следующее выражение для общего решения неоднородной системы (3.1):

X= X 0 + C 1 X 1 + C 2 X 2 + ... + C n-r X n-r . (3.30)

В этом выражении X 0 обозначает частное решение (3.29), C 1 , C 2 , ... , C n-r - произвольные постоянные, а X 1 ,X 2 ,... ,X n-r - элементы нормальной фундаментальной совокупности решений (3.25) соответствующей однородной системы.
Так, для рассмотренной в конце предыдущего пункта неоднородной системы (3.21) частное решение вида (3.29) равно Х 0 =(6,2,0, 0).
Складывая это частное решение с общим решением (3.28) соответствующей однородной системы (3.27), мы получим следующее общее решение неоднородной системы (3.21):

X = (6,2,0, 0) + C 1 (-3/2,-1/2,1,0) + C 2 (-1,-2, 0,1). (3.31)

Здесь C 1 и C 2 - произвольные постоянные.
4. Заключительные замечания о решении линейных систем. Развитые в предыдущих пунктах методы решения линейных систем
упираются в необходимость вычисления ранга матрицы и нахождения ее базисного минора. После того, как базисный минор найден, решение сводится к технике вычисления определителей и к использованию формул Крамера.
Для вычисления ранга матрицы можно использовать следующее правило: при вычислении ранга матрицы следует переходить от миноров меньших порядков к минорам больших порядков; при этом, если уже найден отличный от нуля минор М порядка k, то требуют вычисления лишь миноры порядка (k + 1), окаймляющие (т о есть содержащие внутри себя минор М) этот минор М; в случае равенства нулю всех окаймляющих миноров порядка (k + 1) ранг матрицы равен к (в самом деле, в указанном случае все строки (столбцы) матрицы принадлежат линейной оболочке ее k строк (столбцов), на пересечении которых стоит минор М, а размерность указанной линейной оболочки равна k).
Укажем и другое правило вычисления ранга матрицы. Заметим, что со строками (столбцами) матрицы можно производить три элементарные операции , не изменяющие ранга этой матрицы: 1) перестановку двух строк (или двух столбцов), 2) умножение строки (или столбца) на любой отличный от нуля множитель, 3) прибавление к одной строке (столбцу) произвольной линейной комбинации других строк (столбцов) (э ти три операции не изменяют ранга матрицы вследствие того, что операции 1) и 2) не изменяют максимального числа линейно независимых строк (столбцов) матрицы, а операция 3) обладает тем свойством, что линейная оболочка всех строк (столбцов), имевшихся до проведения этой операции, совпадает с линейной оболочкой всех строк (столбцов), полученных после проведения этой операции).
Будем говорить, что матрица ||а ij ||, содержащая m строк и n столбцов, имеет диагональный вид, если равны нулю все ее элементы, отличные от а 11 , а 22 ,.., a rr , где r = min{m, n}. Ранг такой матрицы, очевидно, равен r.
Убедимся в том, что посредством трех элементарных операций любую матрицу

можно привести к диагональному виду (что и позволяет вычислить ее ранг).

В самом деле, если все элементы матрицы (3.31) равны нулю, то эта матрица уже приведена к диагональному виду. Если же у мат-
рицы (3.31) есть отличные от нуля элементы, то путем перестановки двух строк и двух столбцов можно добиться того, чтобы был отличен от нуля элемент а 11 . Умножая после этого первую строку матрицы на а 11 -1 , мы превратим элемент а 11 в единицу. Вычитая далее из j-ro столбца матрицы (при j = 2, 3,..., n) первый столбец, умноженный на а i1 , а затем вычитая из i-й строки (при i = 2, 3,..., n) первую строку, умноженную на а i1 , мы получим вместо (3.31) матрицу следующего вида:

Совершая уже описанные нами операции с матрицей, взятой в рамку, и продолжая действовать аналогичным способом, мы после конечного числа шагов получим матрицу диагонального вида.
Изложенные в предыдущих пунктах методы решения линейных систем, использующие, в конечном итоге, аппарат формул Крамера, могут привести к большим погрешностям в случае, когда значения коэффициентов уравнений и свободных членов заданы приближенно или когда производится округление этих значений в процессе вычислений.
В первую очередь это относится к случаю, когда матрица, отвечающая основному определителю (или базисному минору), является плохо обусловленной (т. е. когда «малым» изменениям элементов этой матрицы отвечают «большие» изменения элементов обратной матрицы). Естественно, что в этом случае решение линейной системы будет неустойчивым (т. е. «малым» изменениям значений коэффициентов уравнений и свободных членов будут отвечать «большие» изменения решения).
Отмеченные обстоятельства приводят к необходимости разработки как других (отличных от формул Крамера) теоретических алгоритмов отыскания решения, так и численных методов решения линейных систем.
В §4 гл.4 мы познакомимся с методом регуляризации А.Н. Тихонова отыскания так называемого нормального (т. е. наиболее близкого к началу координат) решения линейной системы.
В гл.6 будут изложены основные сведения о так называемых итерационных методах решения линейных систем, позволяющих решать эти системы при помощи последовательных приближений неизвестных.

  • Системы m линейных уравнений с n неизвестными.
    Решение системы линейных уравнений — это такое множество чисел {x 1 , x 2 , …, x n }, при подстановке которых в каждое из уравнений системы получается верное равенство.
    где a ij , i = 1, …, m; j = 1, …, n — коэффициенты системы;
    b i , i = 1, …, m — свободные члены;
    x j , j = 1, …, n — неизвестные.
    Вышеприведенная система может быть записана в матричном виде: A · X = B ,




    где (A |B ) — основная матрица системы;
    A — расширенная матрица системы;
    X — столбец неизвестных;
    B — столбец свободных членов.
    Если матрица B не является нуль-матрицей ∅, то данная система линейных уравнений называется неоднородной.
    Если матрица B = ∅, то данная система линейных уравнений называется однородной. Однородная система всегда имеет нулевое (тривиальное) решение: x 1 = x 2 = …, x n = 0 .
    Совместная система линейных уравнений — это имеющая решение система линейных уравнений.
    Несовместная система линейных уравнений — это не имеющая решение система линейных уравнений.
    Определённая система линейных уравнений — это имеющая единственное решение система линейных уравнений.
    Неопределённая система линейных уравнений — это имеющая бесконечное множество решений система линейных уравнений.
  • Системы n линейных уравнений с n неизвестными
    Если число неизвестных равно числу уравнений, то матрица – квадратная. Определитель матрицы называется главным определителем системы линейных уравнений и обозначается символом Δ.
    Метод Крамера для решения систем n линейных уравнений с n неизвестными.
    Правило Крамера.
    Если главный определитель системы линейных уравнений не равен нулю, то система совместна и определена, причем единственное решение вычисляется по формулам Крамера:
    где Δ i — определители, получаемые из главного определителя системы Δ заменой i -го столбца на столбец свободных членов. .
  • Системы m линейных уравнений с n неизвестными
    Теорема Кронекера−Капелли .


    Для того чтобы данная система линейных уравнений была совместной, необходимо и достаточно, чтобы ранг матрицы системы был равен рангу расширенной матрицы системы, rang(Α) = rang(Α|B) .
    Если rang(Α) ≠ rang(Α|B) , то система заведомо не имеет решений.
    Eсли rang(Α) = rang(Α|B) , то возможны два случая:
    1) rang(Α) = n (числу неизвестных) − решение единственно и может быть получено по формулам Крамера;
    2) rang(Α) < n − решений бесконечно много.
  • Метод Гаусса для решения систем линейных уравнений


    Составим расширенную матрицу (A |B ) данной системы из коэффициентов при неизвестных и правых частей.
    Метод Гаусса или метод исключения неизвестных состоит в приведении расширенной матрицы (A |B ) с помощью элементарных преобразований над ее строками к диагональному виду (к верхнему треугольному виду). Возвращаясь к системе уравнений, определяют все неизвестные.
    К элементарным преобразованиям над строками относятся следующие:
    1) перемена местами двух строк;
    2) умножение строки на число, отличное от 0;
    3) прибавление к строке другой строки, умноженной на произвольное число;
    4) выбрасывание нулевой строки.
    Расширенной матрице, приведенной к диагональному виду, соответствует линейная система, эквивалентная данной, решение которой не вызывает затруднений. .
  • Система однородных линейных уравнений.
    Однородная система имеет вид:

    ей соответствует матричное уравнение A · X = 0 .
    1) Однородная система всегда совместна, так как r(A) = r(A|B) , всегда существует нулевое решение (0, 0, …, 0).
    2) Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r = r(A) < n , что равносильно Δ = 0.
    3) Если r < n , то заведомо Δ = 0, тогда возникают свободные неизвестные c 1 , c 2 , …, c n-r , система имеет нетривиальные решения, причем их бесконечно много.
    4) Общее решение X при r < n может быть записано в матричном виде следующим образом:
    X = c 1 · X 1 + c 2 · X 2 + … + c n-r · X n-r ,
    где решения X 1 , X 2 , …, X n-r образуют фундаментальную систему решений.
    5) Фундаментальная система решений может быть получена из общего решения однородной системы:

    ,
    если последовательно полагать значения параметров равными (1, 0, …, 0), (0, 1, …, 0), …, (0, 0, …,1).
    Разложение общего решения по фундаментальной системе решений — это запись общего решения в виде линейной комбинации решений, принадлежащих к фундаментальной системе.
    Теорема . Для того, чтобы система линейных однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы Δ ≠ 0.
    Итак, если определитель Δ ≠ 0, то система имеет единственное решение.
    Если же Δ ≠ 0, то система линейных однородных уравнений имеет бесконечное множество решений.
    Теорема . Для того чтобы однородная система имела ненулевое решение, необходимо и достаточно, чтобы r(A) < n .
    Доказательство :
    1) r не может быть больше n (ранг матрицы не превышает числа столбцов или строк);
    2) r < n , т.к. если r = n , то главный определитель системы Δ ≠ 0, и, по формулам Крамера, существует единственное тривиальное решение x 1 = x 2 = … = x n = 0 , что противоречит условию. Значит, r(A) < n .
    Следствие . Для того чтобы однородная система n линейных уравнений с n неизвестными имела ненулевое решение, необходимо и достаточно, чтобы Δ = 0.

Как явствует из теоремы Крамера , при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

(система несовместна)

Итак, система m линейных уравнений с n переменными называется несовместной , если у неё нет ни одного решения, и совместной , если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой , а более одного – неопределённой .

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где
-

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2.

.

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы - (2; -1; 1).

6. Общая система линейных алгебраических уравнений. Метод Гаусса.

Как мы помним, правило Крамера и матричный метод непригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. Метод Гаусса наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений , который в каждом случае приведет нас к ответу! Сам алгоритм метода во всех трёх случаях работает одинаково. Если в методах Крамера и матричном необходимы знания определителей, то для применения метода Гаусса необходимо знание только арифметических действий, что делает его доступным даже для школьников начальных классов.



Сначала немного систематизируем знания о системах линейных уравнений. Система линейных уравнений может:

1) Иметь единственное решение.
2) Иметь бесконечно много решений.
3) Не иметь решений (быть несовместной ).

Метод Гаусса – наиболее мощный и универсальный инструмент для нахождения решения любой системы линейных уравнений. Как мы помним, правило Крамера и матричный метод непригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. А метод последовательного исключения неизвестных в любом случае приведет нас к ответу! На данном уроке мы опять рассмотрим метод Гаусса для случая №1 (единственное решение системы), под ситуации пунктов №№2-3 отведена статья . Замечу, что сам алгоритм метода во всех трёх случаях работает одинаково.

Вернемся к простейшей системе с урока Как решить систему линейных уравнений?
и решим ее методом Гаусса.

На первом этапе нужно записать расширенную матрицу системы :
. По какому принципу записаны коэффициенты, думаю, всем видно. Вертикальная черта внутри матрицы не несёт никакого математического смысла – это просто отчеркивание для удобства оформления.

Справка : рекомендую запомнить термины линейной алгебры. Матрица системы – это матрица, составленная только из коэффициентов при неизвестных, в данном примере матрица системы: . Расширенная матрица системы – это та же матрица системы плюс столбец свободных членов, в данном случае: . Любую из матриц можно для краткости называть просто матрицей.



После того, как расширенная матрица системы записана, с ней необходимо выполнить некоторые действия, которые также называются элементарными преобразованиями .

Существуют следующие элементарные преобразования:

1) Строки матрицы можно переставлять местами. Например, в рассматриваемой матрице можно безболезненно переставить первую и вторую строки:

2) Если в матрице есть (или появились) пропорциональные (как частный случай – одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной. Рассмотрим, например матрицу . В данной матрице последние три строки пропорциональны, поэтому достаточно оставить только одну из них: .

3) Если в матрице в ходе преобразований появилась нулевая строка, то ее также следует удалить . Рисовать не буду, понятно, нулевая строка – это строка, в которой одни нули .

4) Строку матрицы можно умножить (разделить) на любое число, отличное от нуля . Рассмотрим, например, матрицу . Здесь целесообразно первую строку разделить на –3, а вторую строку – умножить на 2: . Данное действие очень полезно, поскольку упрощает дальнейшие преобразования матрицы.

5) Это преобразование вызывает наибольшие затруднения, но на самом деле ничего сложного тоже нет. К строке матрицы можно прибавить другую строку, умноженную на число , отличное от нуля. Рассмотрим нашу матрицу из практического примера: . Сначала я распишу преобразование очень подробно. Умножаем первую строку на –2: , и ко второй строке прибавляем первую строку умноженную на –2 : . Теперь первую строку можно разделить «обратно» на –2: . Как видите, строка, которую ПРИБАВЛЯЛИ не изменилась . Всегда меняется строка, К КОТОРОЙ ПРИБАВЛЯЮТ .

На практике так подробно, конечно, не расписывают, а пишут короче:

Еще раз: ко второй строке прибавили первую строку, умноженную на –2 . Умножают строку обычно устно или на черновике, при этом мысленный ход расчётов примерно такой:

«Переписываю матрицу и переписываю первую строку: »

«Сначала первый столбец. Внизу мне нужно получить ноль. Поэтому единицу вверху умножаю на –2: , и ко второй строке прибавляю первую: 2 + (–2) = 0. Записываю результат во вторую строку: »

«Теперь второй столбец. Вверху –1 умножаю на –2: . Ко второй строке прибавляю первую: 1 + 2 = 3. Записываю результат во вторую строку: »

«И третий столбец. Вверху –5 умножаю на –2: . Ко второй строке прибавляю первую: –7 + 10 = 3. Записываю результат во вторую строку: »

Пожалуйста, тщательно осмыслите этот пример и разберитесь в последовательном алгоритме вычислений, если вы это поняли, то метод Гаусса практически «в кармане». Но, конечно, над этим преобразованием мы еще поработаем.

Элементарные преобразования не меняют решение системы уравнений

! ВНИМАНИЕ : рассмотренные манипуляции нельзя использовать , если Вам предложено задание, где матрицы даны «сами по себе». Например, при «классических» действиях с матрицами что-то переставлять внутри матриц ни в коем случае нельзя!

Вернемся к нашей системе . Она практически разобрана по косточкам.

Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду :

(1) Ко второй строке прибавили первую строку, умноженную на –2. И снова: почему первую строку умножаем именно на –2? Для того чтобы внизу получить ноль, а значит, избавиться от одной переменной во второй строке.

(2) Делим вторую строку на 3.

Цель элементарных преобразований привести матрицу к ступенчатому виду: . В оформлении задания прямо так и отчеркивают простым карандашом «лестницу», а также обводят кружочками числа, которые располагаются на «ступеньках». Сам термин «ступенчатый вид» не вполне теоретический, в научной и учебной литературе он часто называется трапециевидный вид или треугольный вид .

В результате элементарных преобразований получена эквивалентная исходной система уравнений:

Теперь систему нужно «раскрутить» в обратном направлении – снизу вверх, этот процесс называется обратным ходом метода Гаусса .

В нижнем уравнении у нас уже готовый результат: .

Рассмотрим первое уравнение системы и подставим в него уже известное значение «игрек»:

Рассмотрим наиболее распространенную ситуацию, когда методом Гаусса требуется решить систему трёх линейных уравнений с тремя неизвестными.

Пример 1

Решить методом Гаусса систему уравнений:

Запишем расширенную матрицу системы:

Сейчас я сразу нарисую результат, к которому мы придём в ходе решения:

И повторюсь, наша цель – с помощью элементарных преобразований привести матрицу к ступенчатому виду. С чего начать действия?

Сначала смотрим на левое верхнее число:

Почти всегда здесь должна находиться единица . Вообще говоря, устроит и –1 (а иногда и другие числа), но как-то так традиционно сложилось, что туда обычно помещают единицу. Как организовать единицу? Смотрим на первый столбец – готовая единица у нас есть! Преобразование первое: меняем местами первую и третью строки:

Теперь первая строка у нас останется неизменной до конца решения . Уже легче.

Единица в левом верхнем углу организована. Теперь нужно получить нули вот на этих местах:

Нули получаем как раз с помощью «трудного» преобразования. Сначала разбираемся со второй строкой (2, –1, 3, 13). Что нужно сделать, чтобы на первой позиции получить ноль? Нужно ко второй строке прибавить первую строку, умноженную на –2 . Мысленно или на черновике умножаем первую строку на –2: (–2, –4, 2, –18). И последовательно проводим (опять же мысленно или на черновике) сложение, ко второй строке прибавляем первую строку, уже умноженную на –2 :

Результат записываем во вторую строку:

Аналогично разбираемся с третьей строкой (3, 2, –5, –1). Чтобы получить на первой позиции ноль, нужно к третьей строке прибавить первую строку, умноженную на –3 . Мысленно или на черновике умножаем первую строку на –3: (–3, –6, 3, –27). И к третьей строке прибавляем первую строку, умноженную на –3 :

Результат записываем в третью строку:

На практике эти действия обычно выполняются устно и записываются в один шаг:

Не нужно считать всё сразу и одновременно . Порядок вычислений и «вписывания» результатов последователен и обычно такой: сначала переписываем первую строку, и пыхтим себе потихонечку – ПОСЛЕДОВАТЕЛЬНО иВНИМАТЕЛЬНО :


А мысленный ход самих расчётов я уже рассмотрел выше.

В данном примере это сделать легко, вторую строку делим на –5 (поскольку там все числа делятся на 5 без остатка). Заодно делим третью строку на –2, ведь чем меньше числа, тем проще решение:

На заключительном этапе элементарных преобразований нужно получить еще один ноль здесь:

Для этого к третьей строке прибавляем вторую строку, умноженную на –2 :


Попробуйте разобрать это действие самостоятельно – мысленно умножьте вторую строку на –2 и проведите сложение.

Последнее выполненное действие – причёска результата, делим третью строку на 3.

В результате элементарных преобразований получена эквивалентная исходной система линейных уравнений:

Круто.

Теперь в действие вступает обратный ход метода Гаусса. Уравнения «раскручиваются» снизу вверх.

В третьем уравнении у нас уже готовый результат:

Смотрим на второе уравнение: . Значение «зет» уже известно, таким образом:

И, наконец, первое уравнение: . «Игрек» и «зет» известны, дело за малым:


Ответ :

Как уже неоднократно отмечалось, для любой системы уравнений можно и нужно сделать проверку найденного решения, благо, это несложно и быстро.

Пример 2


Это пример для самостоятельного решения, образец чистового оформления и ответ в конце урока.

Следует отметить, что ваш ход решения может не совпасть с моим ходом решения, и это – особенность метода Гаусса . Но вот ответы обязательно должны получиться одинаковыми!

Пример 3

Решить систему линейных уравнений методом Гаусса

Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Смотрим на левую верхнюю «ступеньку». Там у нас должна быть единица. Проблема состоит в том, что в первом столбце единиц нет вообще, поэтому перестановкой строк ничего не решить. В таких случаях единицу нужно организовать с помощью элементарного преобразования. Обычно это можно сделать несколькими способами. Я поступил так:
(1) К первой строке прибавляем вторую строку, умноженную на –1 . То есть, мысленно умножили вторую строку на –1 и выполнили сложение первой и второй строки, при этом вторая строка у нас не изменилась.

Теперь слева вверху «минус один», что нас вполне устроит. Кто хочет получить +1, может выполнить дополнительное телодвижение: умножить первую строку на –1 (сменить у неё знак).

(2) Ко второй строке прибавили первую строку, умноженную на 5. К третьей строке прибавили первую строку, умноженную на 3.

(3) Первую строку умножили на –1, в принципе, это для красоты. У третьей строки также сменили знак и переставили её на второе место, таким образом, на второй «ступеньке у нас появилась нужная единица.

(4) К третьей строке прибавили вторую строку, умноженную на 2.

(5) Третью строку разделили на 3.

Скверным признаком, который свидетельствует об ошибке в вычислениях (реже – об опечатке), является «плохая» нижняя строка. То есть, если бы у нас внизу получилось что-нибудь вроде , и, соответственно, , то с большой долей вероятности можно утверждать, что допущена ошибка в ходе элементарных преобразований.

Заряжаем обратный ход, в оформлении примеров часто не переписывают саму систему, а уравнения «берут прямо из приведенной матрицы». Обратный ход, напоминаю, работает, снизу вверх. Да тут подарок получился:


Ответ : .

Пример 4

Решить систему линейных уравнений методом Гаусса

Это пример для самостоятельного решения, он несколько сложнее. Ничего страшного, если кто-нибудь запутается. Полное решение и образец оформления в конце урока. Ваше решение может отличаться от моего решения.

В последней части рассмотрим некоторые особенности алгоритма Гаусса.
Первая особенность состоит в том, что иногда в уравнениях системы отсутствуют некоторые переменные, например:

Как правильно записать расширенную матрицу системы? Об этом моменте я уже рассказывал на уроке Правило Крамера. Матричный метод . В расширенной матрице системы на месте отсутствующих переменных ставим нули:

Кстати, это довольно легкий пример, поскольку в первом столбце уже есть один ноль, и предстоит выполнить меньше элементарных преобразований.

Вторая особенность состоит вот в чём. Во всех рассмотренных примерах на «ступеньки» мы помещали либо –1, либо +1. Могут ли там быть другие числа? В ряде случаев могут. Рассмотрим систему: .

Здесь на левой верхней «ступеньке» у нас двойка. Но замечаем тот факт, что все числа в первом столбце делятся на 2 без остатка – и другая двойка и шестерка. И двойка слева вверху нас устроит! На первом шаге нужно выполнить следующие преобразования: ко второй строке прибавить первую строку, умноженную на –1; к третьей строке прибавить первую строку, умноженную на –3. Таким образом, мы получим нужные нули в первом столбце.

Или еще такой условный пример: . Здесь тройка на второй «ступеньке» тоже нас устраивает, поскольку 12 (место, где нам нужно получить ноль) делится на 3 без остатка. Необходимо провести следующее преобразование: к третьей строке прибавить вторую строку, умноженную на –4, в результате чего и будет получен нужный нам ноль.

Метод Гаусса универсален, но есть одно своеобразие. Уверенно научиться решать системы другими методами (методом Крамера, матричным методом) можно буквально с первого раза – там очень жесткий алгоритм. Но вот чтобы уверенно себя чувствовать в методе Гаусса, следует «набить руку», и прорешать хотя бы 5-10 систем. Поэтому поначалу возможны путаница, ошибки в вычислениях, и в этом нет ничего необычного или трагического.

Дождливая осенняя погода за окном.... Поэтому для всех желающих более сложный пример для самостоятельного решения:

Пример 5

Решить методом Гаусса систему четырёх линейных уравнений с четырьмя неизвестными.

Такое задание на практике встречается не так уж и редко. Думаю, даже чайнику, который обстоятельно изучил эту страницу, интуитивно понятен алгоритм решения такой системы. Принципиально всё так же – просто действий больше.

Случаи, когда система не имеет решений (несовместна) или имеет бесконечно много решений, рассмотрены на уроке Несовместные системы и системы с общим решением . Там же можно закрепить рассмотренный алгоритм метода Гаусса.

Желаю успехов!

Решения и ответы:

Пример 2: Решение : Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду.


Выполненные элементарные преобразования:
(1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –1. Внимание! Здесь может возникнуть соблазн из третьей строки вычесть первую, крайне не рекомендую вычитать – сильно повышается риск ошибки. Только складываем!
(2) У второй строки сменили знак (умножили на –1). Вторую и третью строки поменяли местами. Обратите внимание , что на «ступеньках» нас устраивает не только единица, но еще и –1, что даже удобнее.
(3) К третьей строке прибавили вторую строку, умноженную на 5.
(4) У второй строки сменили знак (умножили на –1). Третью строку разделили на 14.

Обратный ход:

Ответ : .

Пример 4: Решение : Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования:
(1) К первой строке прибавили вторую. Таким образом, организована нужная единица на левой верхней «ступеньке».
(2) Ко второй строке прибавили первую строку, умноженную на 7. К третьей строке прибавили первую строку, умноженную на 6.

Со второй «ступенькой» всё хуже , «кандидаты» на неё – числа 17 и 23, а нам нужна либо единичка, либо –1. Преобразования (3) и (4) будут направлены на получение нужной единицы

(3) К третьей строке прибавили вторую, умноженную на –1.
(4) Ко второй строке прибавили третью, умноженную на –3.
Нужная вещь на второй ступеньке получена .
(5) К третьей строке прибавили вторую, умноженную на 6.

В рамках уроков метод Гаусса и Несовместные системы/системы с общим решением мы рассматривали неоднородные системы линейных уравнений , где свободный член (который обычно находится справа) хотя бы одного из уравнений был отличен от нуля.
И сейчас, после хорошей разминки с рангом матрицы , мы продолжим шлифовать технику элементарных преобразований на однородной системе линейных уравнений .
По первым абзацам материал может показаться скучным и заурядным, однако данное впечатление обманчиво. Помимо дальнейшей отработки технических приёмов будет много новой информации, поэтому, пожалуйста, постарайтесь не пренебрегать примерами данной статьи.

Продолжаем разбираться с системами линейных уравнений. До сих пор мы рассматривали системы, которые имеют единственное решение. Такие системы можно решить любым способом: методом подстановки («школьным»), по формулам Крамера, матричным методом , методом Гаусса . Однако на практике широко распространены еще два случая, когда:

1) система несовместна (не имеет решений);

2) система имеет бесконечно много решений.

Для этих систем применяют наиболее универсальный из всех способов решения – метод Гаусса . На самом деле, к ответу приведет и «школьный» способ, но в высшей математике принято использовать гауссовский метод последовательного исключения неизвестных. Те, кто не знаком с алгоритмом метода Гаусса, пожалуйста, сначала изучите урок метод Гаусса

Сами элементарные преобразования матрицы – точно такие же , разница будет в концовке решения. Сначала рассмотрим пару примеров, когда система не имеет решений (несовместна).

Пример 1

Что сразу бросается в глаза в этой системе? Количество уравнений – меньше, чем количество переменных. Есть такая теорема, которая утверждает:«Если количество уравнений в системе меньше количества переменных , то система либо несовместна, либо имеет бесконечно много решений». И это осталось только выяснить.

Начало решения совершенно обычное – запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

(1). На левой верхней ступеньке нам нужно получить (+1) или (–1). Таких чисел в первом столбце нет, поэтому перестановка строк ничего не даст. Единицу придется организовать самостоятельно, и сделать это можно несколькими способами. Мы поступили так. К первой строке прибавляем третью строку, умноженную на (–1).

(2). Теперь получаем два нуля в первом столбце. Ко второй строке прибавляем первую строку, умноженную на 3. К третьей строке прибавляем первую, умноженную на 5.

(3). После выполненного преобразования всегда целесообразно посмотреть, а нельзя ли упростить полученные строки? Можно. Вторую строку делим на 2, заодно получая нужную (–1) на второй ступеньке. Третью строку делим на (–3).



(4). К третьей строке прибавляем вторую строку. Наверное, все обратили внимание на нехорошую строку, которая получилась в результате элементарных преобразований:

. Ясно, что так быть не может.

Действительно, перепишем полученную матрицу

обратно в систему линейных уравнений:

Если в результате элементарных преобразований получена строка вида, где λ – число, отличное от нуля, то система несовместна (не имеет решений).

Как записать концовку задания? Необходимо записать фразу:

«В результате элементарных преобразований получена строка вида , где λ 0 ». Ответ: «Система не имеет решений (несовместна)».

Обратите внимание, что в этом случае нет никакого обратного хода алгоритма Гаусса, решений нет и находить попросту нечего.

Пример 2

Решить систему линейных уравнений

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Снова напоминаем, что Ваш ход решения может отличаться от нашего хода решения, метод Гаусса не задаёт однозначного алгоритма, о порядке действий и о самих действиях надо догадываться в каждом случае самостоятельно.

Еще одна техническая особенность решения: элементарные преобразования можно прекращать сразу же , как только появилась строка вида , где λ 0 . Рассмотрим условный пример: предположим, что после первого же преобразования получилась матрица

.

Эта матрица еще не приведена к ступенчатому виду, но в дальнейших элементарных преобразованиях нет необходимости, так как появилась строка вида , где λ 0 . Следует сразу дать ответ, что система несовместна.

Когда система линейных уравнений не имеет решений – это почти подарок студенту, ввиду того, что получается короткое решение, иногда буквально в 2-3 действия. Но всё в этом мире уравновешено, и задача, в которой система имеет бесконечно много решений – как раз длиннее.

Пример 3:

Решить систему линейных уравнений

Тут 4 уравнений и 4 неизвестных, таким образом, система может иметь либо единственное решение, либо не иметь решений, либо иметь бесконечно много решений. Как бы там ни было, но метод Гаусса в любом случае приведет нас к ответу. В этом и его универсальность.

Начало опять стандартное. Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Вот и всё, а вы боялись.

(1). Обратите внимание, что все числа в первом столбце делятся на 2, поэтому на левой верхней ступеньке нас устраивает и двойка. Ко второй строке прибавляем первую строку, умноженную на (–4). К третьей строке прибавляем первую строку, умноженную на (–2). К четвертой строке прибавляем первую строку, умноженную на (–1).

Внимание! У многих может возникнуть соблазн из четвертой строки вычесть первую строку. Так делать можно, но не нужно, опыт показывает, что вероятность ошибки в вычислениях увеличивается в несколько раз. Только складываем: к четвертой строке прибавляем первую строку, умноженную на (–1) – именно так!

(2). Последние три строки пропорциональны, две из них можно удалить. Здесь опять нужно проявить повышенное внимание , а действительно ли строки пропорциональны? Для перестраховки не лишним будет вторую строку умножить на (–1), а четвертую строку разделить на 2, получив в результате три одинаковые строки. И только после этого удалить две из них. В результате элементарных преобразований расширенная матрица системы приведена к ступенчатому виду:

При оформлении задачи в тетради желательно для наглядности делать такие же пометки карандашом.

Перепишем соответствующую систему уравнений:

«Обычным» единственным решением системы здесь и не пахнет. Нехорошей строки , где λ 0, тоже нет. Значит, это и есть третий оставшийся случай – система имеет бесконечно много решений.

Бесконечное множество решений системы коротко записывают в виде так называемого общего решения системы .

Общее решение системы найдем с помощью обратного хода метода Гаусса. Для систем уравнений с бесконечным множеством решений появляются новые понятия: «базисные переменные» и «свободные переменные» . Сначала определим, какие переменные у нас являются базисными , а какие переменные - свободными . Не обязательно подробно разъяснять термины линейной алгебры, достаточно запомнить, что вот существуют такие базисные переменные и свободные переменные .

Базисные переменные всегда «сидят» строго на ступеньках матрицы . В данном примере базисными переменными являются x 1 и x 3 .

Свободные переменные – это все оставшиеся переменные, которым не досталось ступеньки. В нашем случае их две: x 2 и x 4 – свободные переменные.

Теперь нужно все базисные переменные выразить только через свободные переменные . Обратный ход алгоритма Гаусса традиционно работает снизу вверх. Из второго уравнения системы выражаем базисную переменную x 3:

Теперь смотрим на первое уравнение: . Сначала в него подставляем найденное выражение :

Осталось выразить базисную переменную x 1 через свободные переменные x 2 и x 4:

В итоге получилось то, что нужно – все базисные переменные (x 1 и x 3) выражены только через свободные переменные (x 2 и x 4):

Собственно, общее решение готово:

.

Как правильно записать общее решение? Прежде всего, свободные переменные записываются в общее решение «сами по себе» и строго на своих местах. В данном случае свободные переменные x 2 и x 4 следует записать на второй и четвертой позиции:

.

Полученные же выражения для базисных переменных и , очевидно, нужно записать на первой и третьей позиции:

Из общего решения системы можно найти бесконечно много частных решений . Это очень просто. Свободными переменные x 2 и x 4 называют так, потому что им можно придавать любые конечные значения . Самыми популярными значениями являются нулевые значения, поскольку при этом частное решение получается проще всего.

Подставив (x 2 = 0; x 4 = 0) в общее решение, получим одно из частных решений:

, или – это частное решение, соответствующее свободным переменным при значениях (x 2 = 0; x 4 = 0).

Другой сладкой парочкой являются единицы, подставим (x 2 = 1 и x 4 = 1) в общее решение:

, т. е. (-1; 1; 1; 1) – еще одно частное решение.

Легко заметить, что система уравнений имеет бесконечно много решений, так как свободным переменным мы можем придать любые значения.

Каждое частное решение должно удовлетворять каждому уравнению системы. На этом основана «быстрая» проверка правильности решения. Возьмите, например, частное решение (-1; 1; 1; 1) и подставьте его в левую часть каждого уравнения исходной системы:

Всё должно сойтись. И с любым полученным вами частным решением – тоже всё должно сойтись.

Строго говоря, проверка частного решения иногда обманывает, т.е. какое-нибудь частное решение может удовлетворять каждому уравнению системы, а само общее решение на самом деле найдено неверно. Поэтому, прежде всего, более основательна и надёжна проверка общего решения.

Как проверить полученное общее решение ?

Это несложно, но довольно требует длительных преобразований. Нужно взять выражения базисных переменных, в данном случае и , и подставить их в левую часть каждого уравнения системы.

В левую часть первого уравнения системы:

Получена правая часть исходного первого уравнения системы.

В левую часть второго уравнения системы:

Получена правая часть исходного второго уравнения системы.

И далее – в левые части третьего и четвертого уравнение системы. Эта проверка дольше, но зато гарантирует стопроцентную правильность общего решения. Кроме того, в некоторых заданиях требуют именно проверку общего решения.

Пример 4:

Решить систему методом Гаусса. Найти общее решение и два частных. Сделать проверку общего решения.

Это пример для самостоятельного решения. Здесь, кстати, снова количество уравнений меньше, чем количество неизвестных, а значит, сразу понятно, что система будет либо несовместной, либо с бесконечным множеством решений.

Пример 5:

Решить систему линейных уравнений. Если система имеет бесконечно много решений, найти два частных решения и сделать проверку общего решения

Решение: Запишем расширенную матрицу системы и, с помощью элементарных преобразований, приведем ее к ступенчатому виду:

(1). Ко второй строке прибавляем первую строку. К третьей строке прибавляем первую строку, умноженную на 2. К четвертой строке прибавляем первую строку, умноженную на 3.

(2). К третьей строке прибавляем вторую строку, умноженную на (–5). К четвертой строке прибавляем вторую строку, умноженную на (–7).

(3). Третья и четвертая строки одинаковы, одну из них удаляем. Вот такая красота:

Базисные переменные сидят на ступеньках, поэтому – базисные переменные.

Свободная переменная, которой не досталось ступеньки здесь всего одна: .

(4). Обратный ход. Выразим базисные переменные через свободную переменную:

Из третьего уравнения:

Рассмотрим второе уравнение и подставим в него найденное выражение :

, , ,

Рассмотрим первое уравнение и подставим в него найденные выражения и :

Таким образом, общее решение при одной свободной переменной x 4:

Еще раз, как оно получилось? Свободная переменная x 4 одиноко сидит на своём законном четвертом месте. Полученные выражения для базисных переменных , , - тоже на своих местах.

Сразу выполним проверку общего решения.

Подставляем базисные переменные , , в левую часть каждого уравнения системы:

Получены соответствующие правые части уравнений, таким образом, найдено верное общее решение.

Теперь из найденного общего решения получим два частных решения. Все переменные выражаются здесь через единственную свободную переменную x 4 . Ломать голову не нужно.

Пусть x 4 = 0, тогда – первое частное решение.

Пусть x 4 = 1, тогда – еще одно частное решение.

Ответ: Общее решение: . Частные решения:

и .

Пример 6:

Найти общее решение системы линейных уравнений.

Проверка общего решения у нас уже сделана, ответу можно доверять. Ваш ход решения может отличаться от нашего хода решения. Главное, чтобы совпали общие решения. Наверное, многие заметили неприятный момент в решениях: очень часто при обратном ходе метода Гаусса нам пришлось возиться с обыкновенными дробями. На практике это действительно так, случаи, когда дробей нет – встречаются значительно реже. Будьте готовы морально, и, самое главное, технически.

Остановимся на особенностях решения, которые не встретились в прорешанных примерах. В общее решение системы иногда может входить константа (или константы).

Например, общее решение: . Здесь одна из базисных переменных равна постоянному числу: . В этом нет ничего экзотического, так бывает. Очевидно, что в данном случае любое частное решение будет содержать пятерку на первой позиции.

Редко, но встречаются системы, в которых количество уравнений больше количества переменных . Однако метод Гаусса работает в самых суровых условиях. Следует невозмутимо привести расширенную матрицу системы к ступенчатому виду по стандартному алгоритму. Такая система может быть несовместной, может иметь бесконечно много решений, и, как ни странно, может иметь единственное решение.

Повторимся в своем совете – чтобы комфортно себя чувствовать при решении системы методом Гаусса, следует набить руку и прорешать хотя бы десяток систем.

Решения и ответы:

Пример 2:

Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду.

Выполненные элементарные преобразования:

(1) Первую и третью строки поменяли местами.

(2) Ко второй строке прибавили первую строку, умноженную на (–6). К третьей строке прибавили первую строку, умноженную на (–7).

(3) К третьей строке прибавили вторую строку, умноженную на (–1).

В результате элементарных преобразований получена строка вида , где λ 0 . Значит, система несовместна. Ответ: решений нет.

Пример 4:

Решение: Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования:

(1). Ко второй строке прибавили первую строку, умноженную на 2. К третьей строке прибавили первую строку, умноженную на 3.

Для второй ступеньки нет единицы , и преобразование (2) направлено на её получение.

(2). К третьей строке прибавили вторую строку, умноженную на –3.

(3). Вторую с третью строки поменяли местами (переставили полученную –1 на вторую ступеньку)

(4). К третьей строке прибавили вторую строку, умноженную на 3.

(5). У первых двух строк сменили знак (умножили на –1), третью строку разделили на 14.

Обратный ход:

(1). Здесь – базисные переменные (которые на ступеньках), а – свободные переменные (кому не досталось ступеньки).

(2). Выразим базисные переменные через свободные переменные:

Из третьего уравнения: .

(3). Рассмотрим второе уравнение: , частные решения:

Ответ: Общее решение:

Комплексные числа

В этом разделе мы познакомимся с понятием комплексного числа , рассмотрим алгебраическую , тригонометрическую и показательную форму комплексного числа. А также научимся выполнять действия с комплексными числами: сложение, вычитание, умножение, деление, возведение в степень и извлечение корня.

Для освоения комплексных чисел не требуется каких-то специальных знаний из курса высшей математики, и материал доступен даже школьнику. Достаточно уметь выполнять алгебраические действия с «обычными» числа, и помнить тригонометрию.

Сначала вспомним «обычные» Числа. В математике они называются множеством действительных чисел и обозначаются буквой R, либо R (утолщённой). Все действительные числа сидят на знакомой числовой прямой:

Компания действительных чисел очень пёстрая – здесь и целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой оси обязательно соответствует некоторое действительное число.

Однако на практике широко распространены еще два случая:

– Система несовместна (не имеет решений);
– Система совместна и имеет бесконечно много решений.

Примечание : термин «совместность» подразумевает, что у системы существует хоть какое-то решение. В ряде задач требуется предварительно исследовать систему на совместность, как это сделать – см. статью о ранге матриц .

Для этих систем применяют наиболее универсальный из всех способов решения – метод Гаусса . На самом деле, к ответу приведет и «школьный» способ, но в высшей математике принято использовать гауссовский метод последовательного исключения неизвестных. Те, кто не знаком с алгоритмом метода Гаусса, пожалуйста, сначала изучите урок метод Гаусса для чайников .

Сами элементарные преобразования матрицы – точно такие же , разница будет в концовке решения. Сначала рассмотрим пару примеров, когда система не имеет решений (несовместна).

Пример 1

Что сразу бросается в глаза в этой системе? Количество уравнений – меньше, чем количество переменных. Если количество уравнений меньше, чем количество переменных , то сразу можно сказать, что система либо несовместна, либо имеет бесконечно много решений. И это осталось только выяснить.

Начало решения совершенно обычное – запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

(1) На левой верхней ступеньке нам нужно получить +1 или –1. Таких чисел в первом столбце нет, поэтому перестановка строк ничего не даст. Единицу придется организовать самостоятельно, и сделать это можно несколькими способами. Я поступил так: К первой строке прибавляем третью строку, умноженную на –1.

(2) Теперь получаем два нуля в первом столбце. Ко второй строке прибавляем первую строку, умноженную на 3. К третьей строке прибавляем первую строку, умноженную на 5.

(3) После выполненного преобразования всегда целесообразно посмотреть, а нельзя ли упростить полученные строки? Можно. Вторую строку делим на 2, заодно получая нужную –1 на второй ступеньке. Третью строку делим на –3.

(4) К третьей строке прибавляем вторую строку.

Наверное, все обратили внимание на нехорошую строку, которая получилась в результате элементарных преобразований: . Ясно, что так быть не может. Действительно, перепишем полученную матрицу обратно в систему линейных уравнений:

Если в результате элементарных преобразований получена строка вида , где – число, отличное от нуля, то система несовместна (не имеет решений) .

Как записать концовку задания? Нарисуем белым мелом: «в результате элементарных преобразований получена строка вида , где » и дадим ответ: система не имеет решений (несовместна).

Если же по условию требуется ИССЛЕДОВАТЬ систему на совместность, тогда необходимо оформить решение в более солидном стиле с привлечением понятия ранга матрицы и теоремы Кронекера-Капелли .

Обратите внимание, что здесь нет никакого обратного хода алгоритма Гаусса – решений нет и находить попросту нечего.

Пример 2

Решить систему линейных уравнений

Это пример для самостоятельного решения. Полное решение и ответ в конце урока. Снова напоминаю, что ваш ход решения может отличаться от моего хода решения, у алгоритма Гаусса нет сильной «жёсткости».

Еще одна техническая особенность решения: элементарные преобразования можно прекращать сразу же , как только появилась строка вида , где . Рассмотрим условный пример: предположим, что после первого же преобразования получилась матрица . Матрица еще не приведена к ступенчатому виду, но в дальнейших элементарных преобразованиях нет никакой необходимости, так как появилась строка вида , где . Следует сразу дать ответ, что система несовместна.

Когда система линейных уравнений не имеет решений – это почти подарок, ввиду того, что получается короткое решение, иногда буквально в 2-3 действия.

Но всё в этом мире уравновешено, и задача, в которой система имеет бесконечно много решений – как раз длиннее.

Пример 3

Решить систему линейных уравнений

Тут 4 уравнений и 4 неизвестных, таким образом, система может иметь либо единственное решение, либо не иметь решений, либо иметь бесконечно много решений. Как бы там ни было, но метод Гаусса в любом случае приведет нас к ответу. В этом его и универсальность.

Начало опять стандартное. Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Вот и всё, а вы боялись.

(1) Обратите внимание, что все числа в первом столбце делятся на 2, поэтому на левой верхней ступеньке нас устраивает и двойка. Ко второй строке прибавляем первую строку, умноженную на –4. К третьей строке прибавляем первую строку, умноженную на –2. К четвертой строке прибавляем первую строку, умноженную на –1.

Внимание! У многих может возникнуть соблазн из четвертой строки вычесть первую строку. Так делать можно, но не нужно, опыт показывает, что вероятность ошибки в вычислениях увеличивается в несколько раз. Только складываем: К четвертой строке прибавляем первую строку, умноженную на –1 – именно так!

(2) Последние три строки пропорциональны, две из них можно удалить.

Здесь опять нужно проявить повышенное внимание , а действительно ли строки пропорциональны? Для перестраховки (особенно, чайнику) не лишним будет вторую строку умножить на –1, а четвертую строку разделить на 2, получив в результате три одинаковые строки. И только после этого удалить две из них.

В результате элементарных преобразований расширенная матрица системы приведена к ступенчатому виду:

При оформлении задачи в тетради желательно для наглядности делать такие же пометки карандашом.

Перепишем соответствующую систему уравнений:

«Обычным» единственным решением системы здесь и не пахнет. Нехорошей строки тоже нет. Значит, это третий оставшийся случай – система имеет бесконечно много решений. Иногда по условию нужно исследовать совместность системы (т.е. доказать, что решение вообще существует), об этом можно прочитать в последнем параграфе статьи Как найти ранг матрицы? Но пока разбираем азы:

Бесконечное множество решений системы коротко записывают в виде так называемого общего решения системы .

Общее решение системы найдем с помощью обратного хода метода Гаусса.

Сначала нужно определить, какие переменные у нас являются базисными , а какие переменные свободными . Не обязательно заморачиваться терминами линейной алгебры, достаточно запомнить, что вот существуют такие базисные переменные и свободные переменные .

Базисные переменные всегда «сидят» строго на ступеньках матрицы .
В данном примере базисными переменными являются и

Свободные переменные – это все оставшиеся переменные, которым не досталось ступеньки. В нашем случае их две: – свободные переменные.

Теперь нужно все базисные переменные выразить только через свободные переменные .

Обратный ход алгоритма Гаусса традиционно работает снизу вверх.
Из второго уравнения системы выражаем базисную переменную :

Теперь смотрим на первое уравнение: . Сначала в него подставляем найденное выражение :

Осталось выразить базисную переменную через свободные переменные :

В итоге получилось то, что нужно – все базисные переменные ( и ) выражены только через свободные переменные :

Собственно, общее решение готово:

Как правильно записать общее решение?
Свободные переменные записываются в общее решение «сами по себе» и строго на своих местах. В данном случае свободные переменные следует записать на второй и четвертой позиции:
.

Полученные же выражения для базисных переменных и , очевидно, нужно записать на первой и третьей позиции:

Придавая свободным переменным произвольные значения , можно найти бесконечно много частных решений . Самыми популярными значениями являются нули, поскольку частное решение получается проще всего. Подставим в общее решение:

– частное решение.

Другой сладкой парочкой являются единицы, подставим в общее решение:

– еще одно частное решение.

Легко заметить, что система уравнений имеет бесконечно много решений (так как свободным переменным мы можем придать любые значения)

Каждое частное решение должно удовлетворять каждому уравнению системы. На этом основана «быстрая» проверка правильности решения. Возьмите, например, частное решение и подставьте его в левую часть каждого уравнения исходной системы:

Всё должно сойтись. И с любым полученным вами частным решением – тоже всё должно сойтись.

Но, строго говоря, проверка частного решения иногда обманывает, т.е. какое-нибудь частное решение может удовлетворять каждому уравнению системы, а само общее решение на самом деле найдено неверно.

Поэтому более основательна и надёжна проверка общего решения. Как проверить полученное общее решение ?

Это несложно, но довольно муторно. Нужно взять выражения базисных переменных, в данном случае и , и подставить их в левую часть каждого уравнения системы.

В левую часть первого уравнения системы:


В левую часть второго уравнения системы:


Получена правая часть исходного уравнения.

Пример 4

Решить систему методом Гаусса. Найти общее решение и два частных. Сделать проверку общего решения.

Это пример для самостоятельного решения. Здесь, кстати, снова количество уравнений меньше, чем количество неизвестных, а значит, сразу понятно, что система будет либо несовместной, либо с бесконечным множеством решений. Что важно в самом процессе решения? Внимание, и еще раз внимание . Полное решение и ответ в конце урока.

И еще пара примеров для закрепления материала

Пример 5

Решить систему линейных уравнений. Если система имеет бесконечно много решений, найти два частных решения и сделать проверку общего решения

Решение : Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

(1) Ко второй строке прибавляем первую строку. К третьей строке прибавляем первую строку, умноженную на 2. К четвертой строке прибавляем первую строку, умноженную на 3.
(2) К третьей строке прибавляем вторую строку, умноженную на –5. К четвертой строке прибавляем вторую строку, умноженную на –7.
(3) Третья и четвертая строки одинаковы, одну из них удаляем.

Вот такая красота:

Базисные переменные сидят на ступеньках, поэтому – базисные переменные.
Свободная переменная, которой не досталось ступеньки здесь всего одна:

Обратный ход:
Выразим базисные переменные через свободную переменную:
Из третьего уравнения:

Рассмотрим второе уравнение и подставим в него найденное выражение :


Рассмотрим первое уравнение и подставим в него найденные выражения и :

Да, всё-таки удобен калькулятор, который считает обыкновенные дроби.

Таким образом, общее решение:

Еще раз, как оно получилось? Свободная переменная одиноко сидит на своём законном четвертом месте. Полученные выражения для базисных переменных , тоже заняли свои порядковые места.

Сразу выполним проверку общего решения. Работа для негров, но она у меня уже выполнена, поэтому ловите =)

Подставляем трех богатырей , , в левую часть каждого уравнения системы:

Получены соответствующие правые части уравнений, таким образом, общее решение найдено верно.

Теперь из найденного общего решения получим два частных решения. Шеф-поваром здесь выступает единственная свободная переменная . Ломать голову не нужно.

Пусть , тогда – частное решение.
Пусть , тогда – еще одно частное решение.

Ответ : Общее решение: , частные решения: , .

Зря я тут про негров вспомнил... ...потому что в голову полезли всякие садистские мотивы и вспомнилась известная фотожаба, на которой куклуксклановцы в белых балахонах бегут по полю за чернокожим футболистом. Сижу, тихо улыбаюсь. Знаете, как отвлекает….

Много математики вредно, поэтому похожий заключительный пример для самостоятельного решения.

Пример 6

Найти общее решение системы линейных уравнений.

Проверка общего решения у меня уже сделана, ответу можно доверять. Ваш ход решения может отличаться от моего хода решения, главное, чтобы совпали общие решения.

Наверное, многие заметили неприятный момент в решениях: очень часто при обратном ходе метода Гаусса нам пришлось возиться с обыкновенными дробями. На практике это действительно так, случаи, когда дробей нет – встречаются значительно реже. Будьте готовы морально, и, самое главное, технически.

Остановлюсь на некоторых особенностях решения, которые не встретились в прорешанных примерах.

В общее решение системы иногда может входить константа (или константы), например: . Здесь одна из базисных переменных равна постоянному числу: . В этом нет ничего экзотического, так бывает. Очевидно, что в данном случае любое частное решение будет содержать пятерку на первой позиции.

Редко, но встречаются системы, в которых количество уравнений больше количества переменных . Метод Гаусса работает в самых суровых условиях, следует невозмутимо привести расширенную матрицу системы к ступенчатому виду по стандартному алгоритму. Такая система может быть несовместной, может иметь бесконечно много решений, и, как ни странно, может иметь единственное решение.

Похожие публикации