Обо всем на свете

Вероятность события. Определение вероятности события. Случайные события и их классификация Основные понятия классической теории вероятности

Лекция 1

ВВЕДЕНИЕ

ЧАСТЬ 1

ЦЕЛЬ ЛЕКЦИИ: определить предмет курса; ввести понятия опыта, случайного явления, случайного события, а также вероятности и частоты события; дать классическое определение вероятности и провести классификацию схем выбора при непосредственном подсчете вероятности.

Теория вероятностей – математическая наука, изучающая закономерности в случайных явлениях.

Под опытом понимается некоторая воспроизводимая совокупность условий, в которой наблюдается то или иное явление. Опыт может представлять как одно испытание, так и серию испытаний.

Случайное явление – это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает каждый раз несколько по-иному.

Примеры случайных явлений: взвешивание тела на аналитических весах, подбрасывание монеты или игрального кубика.

В данных примерах условия опыта неизменны, но результаты опыта варьируются. Эти вариации связаны с воздействием второстепенных факторов, влияющих на исход опыта, но не оговоренных в числе основных условий. На практике существует большой класс задач, в которых интересующий исход опыта зависит от столь большого числа факторов, что учесть их в полном объеме невозможно.

При наблюдении совокупности однородных случайных явлений часто обнаруживается закономерность, получившая название устойчивости частот (бросание монеты при многократном повторении дает число выпадения герба, равное 1/2, бросание игрального кубика дает число выпадений грани с цифрой 6, равное 1/6; процент брака в отлаженном технологическом процессе). Проявление такого рода закономерности при массовом воспроизведении опыта позволяет сделать вывод о том, что отдельные индивидуальности случайных явлений тонут в суммарном результате опытов.

Таким образом, базой для применения вероятностных (статистических) методов является свойство устойчивости частот в массовых случайных явлениях. Методы теории вероятностей не позволяют предсказать исход отдельного опыта, но дают возможность предсказать суммарный результат (в среднем) большого числа опытов. К примеру, случайным является движение молекул газа в сосуде, и не представляется возможным предсказать траекторию движения и скорость отдельной молекулы, однако давление газа на стенки сосуда (при большом числе молекул) является неслучайной величиной.

Зарождение теории вероятностей связано с исследованиями Паскаля (1623–1662), Ферма (1601–1665), Гюйгенса (1629–1695) в области теории азартных игр, когда было сформулировано понятие вероятности, математического ожидания. Классическое определение вероятности события было введено Якобом Бернулли (1654–1705), им же был сформулирован закон больших чисел. В дальнейшем основы теории вероятностей закладывались работами таких математиков, как Муавр (1667–1754), Лаплас(1749–1827), Гаусс (1777–1855), Пуассон (1781–1840). Большой вклад в развитие теории вероятностей внесла русская школа математики в лице П. Л. Чебышева (1821–1894), А. А. Маркова (1856–1922), А. М. Ляпунова (1857–1918), А. Н. Колмогорова(1903–1987).


Случайное событие

Случайное событие – всякий факт, который в результате опыта со случайным исходом может произойти или не произойти.

Примеры: А – появление герба при подбрасывании монеты; В – появление четной цифры при подбрасывании игрального кубика; С – попадание в мишень при выстреле.

Противоположным событию А называется событие, состоящее в невыполнении события А .

У каждого из событий – разная возможность его появления. В качестве численной меры степени объективной возможности события используется понятие вероятности события . Понятие вероятности события связано с понятием частоты события.

Достоверным называется событие, которое в результате опыта обязательно должно произойти, невозможным называется событие, которое в результате опыта произойти не может. Для достоверного события полагается вероятность, равная 1, для невозможного события – 0. Исходя из этого, диапазон изменения вероятности будет составлять 0 – 1.

Практически невозможным называется событие, вероятность которого не в точности равна 0, но весьма близка к 0. Например: из разрезной азбуки, состоящей из 32 букв, вынимается с возвращением 15 букв. Какова вероятность того, что последовательность этих букв составит фразу "Как молоды мы были"? Данная вероятность составит (1/32) 15 . Событие практически невозможное.

Практически достоверным называется событие, вероятность которого не в точности равна 1, но весьма близка к 1. Такое событие является противоположным практически невозможному. С данными понятиями связывается принцип практической уверенности, который формулируется следующим образом: если вероятность некоторого события А в данном опыте весьма мала, то можно быть практически уверенным, что при однократном проведении опыта событие А не произойдет. Выбор вероятности, которая бы считалась достаточной при определении возможности того или иного прогноза, производится каждый раз из практических соображений с учетом стоимости потерь, вызванных ошибочным прогнозом.

Опыт с конечным числом исходов.

Классическое определение вероятности

В ряде опытов, таких, как подбрасывание монеты, подбрасывание игрального кубика, карточные игры, рулетка, извлечение наудачу определенного числа шаров из урны, возможные исходы обладают определенной симметрией к условиям опыта и одинаково возможны (опыты с конечным числом равновероятных исходов). В частности, при подбрасывании "правильного" кубика ни один из элементарных исходов (появление любой цифры: 1,2,3,4,5,6) нельзя считать более предпочтительным, чем другой.

Для таких опытов представляется возможным непосредственно подсчитать вероятность события. Именно при анализе таких опытов и было сформулировано в XVII в. классическое определение вероятности .

Прежде чем сформулировать классическое определение вероятности, введем ряд определений.

Несколько событий в данном опыте образуют полную группу событий , если в результате опыта непременно должно появиться хотя бы одно из них, например герб, цифра (решка) при бросании монеты; попадание, промах при стрельбе; появление 1,2,3,4,5,6 при бросании игральной кости.

Несколько событий называются несовместными в данном опыте, если исключено их совместное появление (герб и решка при бросании монеты).

Равновозможными событиями называют события, если по условиям симметрии опыта можно считать, что ни одно из этих событий не является объективно более возможным, чем другое (герб или решка при бросании монеты).

Если группа событий обладает всеми тремя свойствами: полноты, равновозможности и несовместности, то такие события называют случаями . Случай называют благоприятным некоторому событию А , если появление этого случая влечет за собой появление данного события. Например, при бросании игральной кости есть три случая, благоприятных событию А , которое состоит в появлении четного числа очков, а именно появлении 2, 4 или 6.

Соответственно опыт, при котором имеет место симметрия равновозможных и исключающих друг друга исходов, получил название схемы случаев (или схемы урн) . Непосредственный подсчет вероятностей в схеме случаев основан на оценке доли благоприятных случаев в их общем числе:

где – число благоприятных случаев событию А , n – общее число случаев.

Так как число благоприятных случаев может изменяться от 0 до n , то вероятность события будет изменяться в пределах 0 – 1. Формула (1.1) называется классической формулой , она используется для непосредственного подсчета вероятностей, когда опыт сводится к схеме случаев.

Непосредственный подсчет вероятностей.

Схема выбора с возвращением

и без возвращения элементов

При определении вероятности события по классической формуле (1.1) для определения общего числа случаев и числа благоприятных случаев часто привлекаются элементы комбинаторики. При этом в каждом опыте важным является способ выбора элементов.

Существуют две схемы выбора: схема выбора без возвращения элементов и схема выбора с возвращением элементов. В первом случае извлеченные m элементов (без разницы, по одному или вместе) не возвращаются в исходную совокупность. Во втором случае на каждом шаге элементы извлекаются по одному, фиксируется выбранный элемент, затем он возвращается, и вся исходная совокупность тщательно перемешивается. Таким образом, во втором случае один и тот же элемент может извлекаться неоднократно.

После осуществления выбора элементы могут быть упорядочены или нет. Итак, в классической схеме существует четыре типа опытов. Рассмотрим, каким образом рассчитываются общее число случаев и число благоприятных случаев в каждой схеме.

Ÿ Схема выбора без возвращения и без упорядочивания порядка следования элементов (схема выбора, приводящая к сочетаниям). Опыт состоит в выборе из исходной совокупности объемом n элементов m элементов без возвращения и без упорядочивания порядка следования элементов. В этом опыте различными исходами будут совокупности m элементов, отличающиеся друг от друга составом элементов. Количество таких совокупностей (а следовательно, и исходов опыта) определяется числом сочетаний из п элементов по m :

Свойства числа сочетаний:

2) (свойство симметрии);

3) (рекуррентное соотношение);

4) (следствие биномиальной формулы Ньютона).

Ÿ Схема выбора без возвращения, но с упорядочиванием порядка следования элементов (схема выбора, приводящая к размещениям). Опыт состоит в выборе из исходной совокупности объемом n элементов т элементов без возвращения, но с упорядочиванием порядка следования элементов. В этом опыте различными исходами будут совокупности т элементов, отличающиеся друг от друга как составом элементов, так и порядком их следования. Количество таких совокупностей (а следовательно, и исходов опыта) определяется числом размещений из п элементов по т :

При размещения представляют из себя перестановки из п элементов:

Ÿ Схема выбора с возвращением и без упорядочивания порядка следования элементов (схема выбора, приводящая к сочетаниям с повторениями). Опыт состоит в выборе из исходной совокупности объемом п элементов т элементов с возвращением и без упорядочивания порядка следования элементов. В этом опыте различными исходами будут совокупности т элементов, отличающиеся друг от друга составом элементов. При этом отдельные наборы могут содержать повторяющиеся элементы. Количество таких совокупностей (а следовательно, и исходов опыта) определяется числом сочетаний с повторениями из п элементов по т :

Ÿ Схема выбора с возвращением и с упорядочиванием порядка следования элементов (схема выбора, приводящая к размещениям с повторениями). Опыт состоит в выборе из исходной совокупности объемом п элементов т элементов с возвращением и с упорядочиванием порядка следования элементов. В этом опыте различными исходами будут совокупности т элементов, отличающиеся друг от друга как составом элементов, так и порядком следования элементов. При этом отдельные наборы могут содержать повторяющиеся элементы. Количество таких совокупностей (а следовательно, и исходов опыта) определяется числом размещений с повторениями из п элементов по т :

Частота или статистическая вероятность события

Если опыт не сводится к схеме случаев (например, игральная кость несимметрична, и выпадение определенной грани уже не будет равно 1/6), то для определения вероятности события используют понятие частоты события и связь между вероятностью и частотой.

Частотой события А в опыте, состоящем из серии испытаний, называется отношение числа испытаний, в которых появилось событие А , к общему числу испытаний.


Частоту события иногда называют статистической вероятностью в отличие от "математической", определенной ранее. Вычисляется частота события по следующей формуле:

где – число появлений события А в опыте, N – общее число произведенных испытаний.

При небольшом числе испытаний частота события носит в значительной степени случайный характер и может меняться от одной серии испытаний к другой. Например, рассмотрим опыт, который заключается в том, что монета бросается 10 раз. Интересующее нас событие А – появление герба. Повторяя опыт несколько раз, мы можем фиксировать частоту появления герба: 0,2; 0,4; 0,6; 0,8. Но с увеличением числа испытаний частота события теряет свой случайный характер, приближаясь к некоторой средней постоянной величине. В случае с симметричной монетой частота будет близка к 1/2.

Как отмечено выше, теория вероятностей исследует явления, которые характеризуются устойчивостью частот. В этом случае между частотой события и вероятностью существует органическая связь. В частности, для схемы случаев частота события при увеличении числа испытаний всегда приближается к его вероятности. И в общем случае справедливым является утверждение, что в серии испытаний частота события приближается к вероятности события с тем большей вероятностью, чем больше произведено испытаний. Для вероятностного приближения одних величин к другим используется специальный термин – "сходимость по вероятности". С учетом этого термина выше приведенное утверждение запишется

Данное утверждение составляет сущность теоремы Я. Бернулли и является следствием более общей закономерности, а именно закона больших чисел.

Теория вероятностей – это раздел математики, изучающий закономерности массовых однородных случайных явлений.

Основными исходными понятиями в теории вероятностей являются понятия испытания (опыта) и события . Всякое действие, результат которого фиксируется, называется испытанием (опытом), а результат испытания или испытаний называется событием. Будем говорить, что в результате испытания или испытаний происходит (наступает) событие.

Пример 1 . Подбросим над столом монету. При этом возможны два результата: монета упадёт на стол и на верхней её грани будет «герб» или же на верхней грани монеты будет «цифра». В этом случае будем говорить: выпал «герб» или выпала «цифра». В данном примере подбрасывание монеты является испытанием, а выпадение «герба» или выпадение «цифры» являются событиями, т.е. в результате подбрасывания монеты может произойти одно из двух рассмотренных событий.

Пример 2 . Подбросим монету два раза подряд. При этом возможны следующие события: {оба раза выпал «герб»}, {оба раза выпала «цифра»}, {первый раз выпал «герб», а второй раз – «цифра»}, {первый раз выпала «цифра», а второй раз – «герб»}.

Все рассматриваемые события можно подразделить на достоверные, невозможные и случайные .

Событие называется достоверным , если при данном испытании оно обязательно произойдёт. Событие называется невозможным , если при данном испытании оно не может произойти. Случайным называется событие, которое при данном испытании может произойти или не произойти.

Пример 3 . В урне находятся только красные шары. Проведём испытание – извлечём из урны один шар. Событие {извлечён красный шар} является достоверным, так как в урне только красные шары. Событие {извлечён белый шар} является невозможным, так как в урне нет белых шаров.

Пример 4 . Стрелок произвёл один выстрел по мишени. При этом может произойти одно из двух событий: {есть попадание в мишень} или {нет попадания в мишень}. Оба эти события случайные.

Случайные события принято обозначать заглавными буквами латинского алфавита A, B, C, …; достоверные события – буквой U и невозможные – буквой V .

Случайные события подразделяются на совместные, несовместные и единственно возможные .

События называются совместными , если при одном и том же испытании наступление одного из них не исключает наступление других, т.е. они могут произойти совместно.

События называются несовместными , если при одном и том же испытании наступление одного из них исключает наступление других, т.е. они не могут произойти совместно.

Пример 5 . По цели стреляют два стрелка. Обозначим события:

А = {первый стрелок попал в цель};

В = {второй стрелок попал в цель}.

События А и В будут совместными, так как попадание одного из стрелков в цель не исключает попадание другого.

Пример 6 . Подбрасывается монета. В результате могут произойти события:

А = {выпал «герб»};

В = {выпала «цифра»}.

События А и В несовместны, так как наступление одного из них исключает наступление другого.

События называются единственно возможными , если при данном испытании произойдёт хотя бы одно из них. Два единственно возможные и несовместные события называются противоположными . Если А – некоторое событие, то ему противоположное обозначается . Совокупность единственно возможных и несовместных событий образует полную группу событий .

Пример 7 . В урне находятся белые, чёрные и красные шары. Из урны извлекается один шар. Обозначим события:

А = {извлечён белый шар};

В = {извлечён чёрный шар};

С = {извлечён красный шар}.

События А, В, С являются единственно возможными.

Пример 8 . Стрелок выстрелил по цели. Обозначим события:

А = {есть попадание в цель};

= {нет попадания в цель}.

Эти события являются противоположными.

Пример 9 . Бросается игральный кубик, на гранях которого написаны цифры 1, 2, 3, 4, 5 и 6. Эти цифры обозначают число очков. При бросании кубика на верхней его грани выпадет одна из этих цифр. Обозначим события.

    Случайные события и их классификация

    Классическое определение вероятности

    Непосредственное вычисление вероятностей

§ 1. Случайные события и их классификация

1. Втеории вероятностей случайным событием на­зывают то, что при наличии некоторого комплекса условий S может произойти или не произойти. Например, при бросании монеты может выпасть герб или решка, поэтому события «при бросании монеты выпал герб» и «при бросании монеты выпала решка» - случайные события.

При бросании монеты и ее полете на последнюю воздействуют - многие случайные факторы (сила, с которой брошена монета, форма монеты и др.). Поэтому при каждом отдельном бросании монеты предсказать появление герба или решки невозможно, впрочем, в теории вероятностей такой задачи и не ставится. Однако если бросить монету большое число раз, например 10 000 раз или больше, при одном и том же комплексе условий S , то отношение числа т появлений герба к общему числу п, про­веденных опытов с монетой, будет близко к .

Приведем еще один пример: по статистическим данным на каждую 1000 новорожденных приходится 515, т. е. 51,5%, маль­чиков и 485, т. е. 48,5%, девочек с незначительным отклонением в ту или другую сторону от упомянутых чисел. Эта закономер­ность имеет место для всех народов независимо от экономичес­ких, географических и других условий, но наблюдается она лишь тогда, когда события (рождаемость) носят массовый характер.

Теория вероятностей есть раздел математики, изучающий закономерности массовых однородных случайных событий.

Математическая статистика есть также раздел математики, посвященный математическим методам систематизации, обра­ботки и использования статистических данных для научных и практических выводов.

Математическая статистика пользуется методами различных областей математики и в первую очередь теории вероятностей.

Зарождение и развитие теории вероятностей и математиче­ской статистики, как и всякой другой науки, тесно связано с жиз­ненной потребностью людей, с развитием производительных сил общества. Так, например, организация страховых обществ, пе­репись населения, решение задач, возникавших в азартных играх, методы обработки различных результатов наблюдений, в част­ности, оценка случайных ошибок и многие другие вопросы, реше­ние которых способствовало появлению и развитию этих двух ветвей математики.

Теория вероятностей благодаря трудам Гюйгенса (1629- 1695), Паскаля (1623-1662), П. Ферма (1601-1665) и в особен­ности Я. Бернулли (1654-1705) становится наукой уже в XVII веке.

Крупнейшими представителями этой науки в XVIII и в первой половине XIX века были математики П. Лаплас (1749-1827), К. Гаусс (1777-1855) и С. Пуассон (1781-1840). Работы этих ученых дали возможность применять в теории вероятностей науч­но обоснованные методы.

Особенно быстро теория вероятностей развивалась во второй половине XIX и в XX веке в связи с применением статистических методов исследования различных вопросов и стала теоретичес­кой базой математической статистики. Этот период был ознаме­нован фундаментальными открытиями в области теории вероят­ностей русскими математиками Петербургской математической школы П. Л. Чебышевым (1821-1894) (создателем этой школы) и его знаменитыми учениками А. М. Ляпуновым (1857-1918) и А. А. Марковым (1856-1922).

Современная математическая школа занимает ведущее место во многих отраслях современной математики, в частности, в области теории вероятностей и математической статистики.

Строгое логическое обоснование теории вероятностей произо­шло в XX веке и связано с именами советских математиков, прежде всего с именем А. Н. Колмогорова. Крупнейшими представителями этой области науки являются математики С. Н. Бернштейн, Б. В. Гнеденко, В. И. Романовский, Е. Е. Слуц­кий, Н. В. Смирнов, А. Я. Хинчин, Б. С. Ястремский и др.

2. Подобно тому, как в геометрии первыми понятиями явля­ются точка и прямая, в теории вероятностей первыми понятиями служат событие и вероятность.

Событием называется явление, о котором имеет смысл говорить, что оно произошло или не произошло (происходит или не происходит, произойдет или не произойдет).

События можно подразделить на три вида: достоверные, не­возможные и случайные .

Событие называется достоверны м, если оно при осуще­ствлении данного комплекса условий S обязательно произойдет. Например, если в урне только белые шары, то извлечение из урны белого шара - событие достоверное. Приведем другой пример. В очередном тираже 3%-ного государственного займа событие, что какая-нибудь облигация этого займа выиграет, достоверно.В дальнейшем вместо того, чтобы говорить «при осуществле­нии данного комплекса условий S», будем говорить короче: «при испытании» или «при опыте».

В первом примере, приведенном выше, извлечение из урны шара есть испытание, а появление белого шара - событие.

Во втором примере проведение очередного тиража 3%-ного государственного займа есть испытание (опыт), выигрыш какой-нибудь облигации этого займа - событие.

Событие называется невозможным , если оно при испы­тании не может произойти. Например, в урне содержатся только белые шары. Извлечение из урны черного шара - событие не­возможное.

Событие называется случайным , если оно при испытании может произойти или не произойти. Например, выпадение осад­ков в Минске 1 мая 1980 г.- событие случайное.

Случайные события принято обозначать большими буквами латинского алфавита: А, В, С, ... , достоверные буквой U и не­возможные буквой V . Дадим еще несколько определений.

События
называются совместными (сов­местимыми если появление одно из них не исключает возмож­ности появления других. Например, пусть производится выстрел по цели из каждого орудия, число которых равно трем. Ясно, что не исключается возможность попадания в цель из всех трех ору­дий. Следовательно, эти три события совместные.

Событиями,
называются нес овместимыми (несовместимыми), если наступление одного из них исключает возможность появления любого другого. Например, при бросании монеты выпадение герба исключает возможность появления решки.

События
называются единственно воз­можным и, если при испытании обязательно наступит хотя бы одно из них.

Пример 1. Пусть в урне содержатся белые, черные и красные шары. Извлекаем из урны шар, он может оказаться белым (событие А), черным (событие В) или красным (событие С). По определению эти три события А, В, С - единственно возможные.

События
единственно возможные и несовме­стные называются полной системой событий.

Пример 2. Кубик, на гранях которого обозначено число очков от 1 до 6, называется игральной костью. Предполагается, что кубик сделан из однород­ного материала.

При бросании игральной кости может выпасть одно, два, три, четыре, пять или шесть очков. Обозначим упомянутые события соответственно через,
. Эти события единственно возможные и несовместные, следова­тельно, они образуют полную систему событий.

Два единственно возможных и несовместных события назы­ваются противоположными событиями

Если А - некоторое событие, то противоположное ему собы­тие обозначают .

Пример 3. При бросании монеты может выпасть герб или решка. Эти со­бытия противоположные.

Противоположными событиями также будут: «сдать» и «не сдать» экзамен, «выиграть» и «не выиграть» по лотерейному билету, «попасть» и «не попасть» в цель при выстреле из ружья.

Если при каждом осуществлении комплекса условий S, при котором происходит событие А, происходит и событие В, то го­ворят, что А влечет за собой В, и этот факт обозначают символом AB или B
А .

Если имеет место одновременно AB или B
А , то события А и В называются равносильными. В этом случае пишут А=В.

Таким образом, равносильные события А и В при каждом испытании оба наступают или оба не наступают.

Пример 4. Игральную кость бросили один раз. Пусть выпало шесть очков (событие А). Обозначим через В четное число, через С - число очков, деля­щееся на 3. Очевидно, что AB AС .

Пример 5. В урне один белый шар и три черных. Все шары перенумеро­ваны. Пусть белый шар имеет номер 1. При извлечении шара из урны событие появления белого шара обозначим буквой А, а событие появления шара 1 обоз­начим буквой В. Очевидно, что AB и В А , т. е. события А и В равно­сильны и поэтому можно написать А =В.


Классификация событий на возможные, вероятные и случайные. Понятия простого и сложного элементарного события. Операции над событиями. Классическое определение вероятности случайного события и её свойства. Элементы комбинаторики в теории вероятностей. Геометрическая вероятность. Аксиомы теории вероятностей.

Классификация событий

Одним из основных понятий теории вероятностей является понятие события. Под событием понимают любой факт, который может произойти в результате опыта или испытания. Под опытом , или испытанием , понимается осуществление определённого комплекса условий.


Примеры событий:

    – попадание в цель при выстреле из орудия (опыт - произведение выстрела; событие - попадание в цель);
    – выпадение двух гербов при трёхкратном бросании монеты (опыт - трёхкратное бросание монеты; событие - выпадение двух гербов);
    – появление ошибки измерения в заданных пределах при измерении дальности до цели (опыт - измерение дальности; событие - ошибка измерения).

Можно привести бесчисленное множество подобных примеров. События обозначаются заглавными буквами латинского алфавита и т.д.


Различают события совместные и несовместные . События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие - выпадание трех очков на первой игральной кости, событие - выпадание трех очков на второй кости. и - совместные события. Пусть в магазин поступила партия обуви одного фасона и размера, но разного цвета. Событие - наудачу взятая коробка окажется с обувью черного цвета, событие - коробка окажется с обувью коричневого цвета, и - несовместные события.


Событие называется достоверным , если оно обязательно произойдет в условиях данного опыта.


Событие называется невозможным, если оно не может произойти в условиях данного опыта. Например, событие, заключающееся в том, что из партии стандартных деталей будет взята стандартная деталь, является достоверным, а нестандартная - невозможным.


Событие называется возможным , или случайным , если в результате опыта оно может появиться, но может и не появиться. Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции, несоответствие размера обрабатываемого изделия заданному, отказ одного из звеньев автоматизированной системы управления.


События называются равновозможными , если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие. Например, пусть магазину поставляют электролампочки (причем в равных количествах) несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны.


Важным понятием является полная группа событий . Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера. - появление красного шара при одном извлечении, - появление белого шара, - появление шара с номером. События образуют полную группу совместных событий.


Введем понятие противоположного, или дополнительного, события. Под противоположным событием понимается событие, которое обязательно должно произойти, если не наступило некоторое событие . Противоположные события несовместны и единственно возможны. Они образуют полную группу событий. Например, если партия изготовленных изделий состоит из годных и бракованных, то при извлечении одного изделия оно может оказаться либо годным - событие , либо бракованным - событие .

Операции над событиями

При разработке аппарата и методики исследования случайных событий в теории вероятностей очень важным является понятие суммы и произведения событий.


Суммой, или объединением, нескольких событий называется событие, состоящее в наступлении хотя бы одного из этих событий.


Сумма событий обозначается так:


Например, если событие есть попадание в цель при первом выстреле, событие - при втором, то событие есть попадание в цель вообще, безразлично, при каком выстреле - первом, втором или при обоих вместе.


Произведением, или пересечением, нескольких событий называется событие, состоящее в совместном появлении всех этих событий.


Произведение событий обозначается


Например, если событие есть попадание в цель при первом выстреле, событие - при втором, то событие состоит в том, что в цель попали при обоих выстрелах.


Понятия суммы и произведения событий имеют наглядную геометрическую интерпретацию. Пусть событие состоит в попадании точки в область , событие - в попадании в область , тогда событие состоит в попадании точки в область, заштрихованную на рис. 1, и событие - в попадании точки в область, заштрихованную на рис. 2.


Классическое определение вероятности случайного события

Для количественного сравнения событий по степени возможности их появления вводится числовая мера, которая называется вероятностью события.


Вероятностью события называется число, являющееся выражением меры объективной возможности появления события.


Вероятность события будем обозначать символом .


Вероятность события равна отношению числа случаев , благоприятствующих ему, из общего числа единственно возможных, равновозможных и несовместных случаев к числу , т. е.



Это есть классическое определение вероятности. Таким образом, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, найти совокупность единственно возможных, равновозможных и несовместных случаев, подсчитать общее их число , число случаев , благоприятствующих данному событию, и затем выполнить расчет по формуле (1.1).


Из формулы (1.1) следует, что вероятность события является неотрицательным числом и может изменяться в пределах от нуля до единицы в зависимости от того, какую долю составляет благоприятствующее число случаев от общего числа случаев:


Свойства вероятности

Свойство 1. Если все случаи являются благоприятствующими данному событию , то это событие обязательно произойдет. Следовательно, рассматриваемое событие является достоверным, а вероятность его появления , так как в этом случае



Свойство 2. Если нет ни одного случая, благоприятствующего данному событию , то это событие в результате опыта произойти не может. Следовательно, рассматриваемое событие является невозможным, а вероятность его появления , так как в этом случае :



Свойство 3. Вероятность наступления событий, образующих полную группу, равна единице.


Свойство 4. Вероятность наступления противоположного события определяется так же, как и вероятность наступления, события :



где - число случаев, благоприятствующих появлению противоположного события . Отсюда вероятность наступления противоположного события равна разнице между единицей и вероятностью наступления события :



Важное достоинство классического определения вероятности события состоит в том, что с его помощью вероятность события можно определить, не прибегая к опыту, а исходя из логических рассуждений.

Пример 1. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.


Решение. Обозначим событие, состоящее в том, что набрана нужная цифра. Абонент мог набрать любую из 10 цифр, поэтому общее число возможных исходов равно 10. Эти исходы единственно возможны (одна из цифр набрана обязательно) и равновозможны (цифра набрана наудачу). Благоприятствует событию лишь один исход (нужная цифра лишь одна). Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех исходов:


Элементы комбинаторики

В теории вероятностей часто используют размещения, перестановки и сочетания. Если дано множество , то размещением (сочетанием) из элементов по называется любое упорядоченное (неупорядоченное) подмножество элементов множества . При размещение называется перестановкой из элементов.


Пусть, например, дано множество . Размещениями из трех элементов этого множества по два являются , , , , , ; сочетаниями - , , .


Два сочетания различаются хотя бы одним элементом, а размещения различаются либо самими элементами, либо порядком их следования. Число сочетаний из элементов по вычисляется по формуле



есть число размещений из элементов по ; - число перестановок из элементов.

Пример 2. В партии из 10 деталей имеется 7 стандартных. Найти вероятность того, что среди взятых наудачу 6 деталей ровно 4 стандартных.


Решение. Общее число возможных исходов испытания равно числу способов, которыми можно извлечь 6 деталей из 10, т. е. равно - числу сочетаний из 10 элементов по 6. Число исходов, благоприятствующих событию (среди 6 взятых деталей ровно 4 стандартных), определяем так: 4 стандартные детали можно взять из 7 стандартных деталей способами; при этом остальные детали должны быть нестандартными; взять же 2 нестандартные детали из нестандартных деталей можно способами. Следовательно, число благоприятствующих исходов равно . Исходная вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех исходов:


Статистическое определение вероятности

Формулу (1.1) используют для непосредственного вычисления вероятностей событий только тогда, когда опыт сводится к схеме случаев. На практике часто классическое определение вероятности неприменимо по двум причинам: во-первых, классическое определение вероятности предполагает, что общее число случаев должно быть конечно. На самом же деле оно зачастую не ограничено. Во-вторых, часто невозможно представить исходы опыта в виде равновозможных и несовместных событий.


Частота появления событий при многократно повторяющихся Опытах имеет тенденцию стабилизироваться около какой-то постоянной величины. Таким образом, с рассматриваемым событием можно связать некоторую постоянную величину, около которой группируются частоты и которая является характеристикой объективной связи между комплексом условий, при которых проводятся опыты, и событием.


Вероятностью случайного события называется число, около которого группируются частоты этого события по мере увеличения числа испытаний.


Это определение вероятности называется статистическим.


Преимущество статистического способа определения вероятности состоит в том, что он опирается на реальный эксперимент. Однако его существенный недостаток заключается в том, что для определения вероятности необходимо выполнить большое число опытов, которые очень часто связаны с материальными затратами. Статистическое определение вероятности события хотя и достаточно полно раскрывает содержание этого понятия, но не дает возможности фактического вычисления вероятности.

В классическом определении вероятности рассматривается полная группа конечного числа равновозможных событий. На практике очень часто число возможных исходов испытаний бесконечно. В таких случаях классическое определение вероятности неприменимо. Однако иногда в подобных случаях можно воспользоваться другим методом вычисления вероятности. Для определенности ограничимся двумерным случаем.


Пусть на плоскости задана некоторая область площадью , в которой содержится другая область площадью (рис. 3). В область наудачу бросается точка. Чему равна вероятность того, что точка попадет в область ? При этом предполагается, что наудачу брошенная точка может попасть в любую точку области , и вероятность попасть в какую-либо часть области пропорциональна площади части и не зависит от ее расположения и формы. В таком случае вероятность попадания в область при бросании наудачу точки в область



Таким образом, в общем случае, если возможность случайного появления точки внутри некоторой области на прямой, плоскости или в пространстве определяется не положением этой области и ее границами, а только ее размером, т. е. длиной, площадью или объемом, то вероятность попадания случайной точки внутрь некоторой области определяется как отношение размера этой области к размеру всей области, в которой может появляться данная точка. Это есть геометрическое определение вероятности.


Пример 3. Круглая мишень вращается с постоянной угловой скоростью. Пятая часть мишени окрашена в зеленый цвет, а остальная - в белый (рис. 4). По мишени производится выстрел так, что попадание в мишень - событие достоверное. Требуется определить вероятность попадания в сектор мишени, окрашенный в зелёный цвет.


Решение. Обозначим - "выстрел попал в сектор, окрашенный в зелёный цвет". Тогда . Вероятность получена как отношение площади части мишени, окрашенной в зелёный цвет, ко всей площади мишени, поскольку попадания в любые части мишени равновозможны.

Аксиомы теории вероятностей

Из статистического определения вероятности случайного события следует, что вероятность события есть число, около которого группируются частоты этого события, наблюдаемые на опыте. Поэтому аксиомы теории вероятностей вводятся так, чтобы вероятность события обладала основными свойствами частоты.


Аксиома 1. Каждому событию соответствует определенное число , удовлетворяющее условию и называемое его вероятностью.

Многие, столкнувшись с понятием «теория вероятности», пугаются, думая, что это нечто непосильное, очень сложное. Но все на самом деле не так трагично. Сегодня мы рассмотрим основное понятие теории вероятности, научимся решать задачи на конкретных примерах.

Наука

Что же изучает такой раздел математики, как «теория вероятности»? Она отмечает закономерности и величин. Впервые данным вопросом заинтересовались ученые еще в восемнадцатом веке, когда изучали азартные игры. Основное понятие теории вероятности - событие. Это любой факт, который констатируется опытом или наблюдением. Но что же такое опыт? Еще одно основное понятие теории вероятности. Оно означает, что этот состав обстоятельств создан не случайно, а с определенной целью. Что касается наблюдения, то здесь исследователь сам не участвует в опыте, а просто является свидетелем данных событий, он никак не влияет на происходящее.

События

Мы узнали, что основное понятие теории вероятности - это событие, но не рассмотрели классификацию. Все они делятся на следующие категории:

  • Достоверные.
  • Невозможные.
  • Случайные.

Независимо от того, какие это события, за которыми наблюдают или создают в ходе опыта, все они подвержены данной классификации. Предлагаем с каждым из видов познакомиться отдельно.

Достоверное событие

Это такое обстоятельство, перед которым сделан необходимый комплекс мероприятий. Для того чтобы лучше вникнуть в суть, лучше привести несколько примеров. Этому закону подчинены и физика, и химия, и экономика, и высшая математика. Теория вероятности включает такое важное понятие, как достоверное событие. Приведем примеры:

  • Мы работаем и получаем вознаграждение в виде заработной платы.
  • Сдали хорошо экзамены, прошли конкурс, за это получаем вознаграждение в виде поступления в учебное заведение.
  • Мы вложили деньги в банк, при необходимости получим их назад.

Такие события являются достоверными. Если мы выполнили все необходимые условия, то обязательно получим ожидаемый результат.

Невозможные события

Сейчас мы рассматриваем элементы теории вероятности. Предлагаем перейти к пояснению следующего вида события, а именно - невозможного. Для начала оговорим самое важное правило - вероятность невозможного события равна нулю.

От данной формулировки нельзя отступать при решении задач. Для пояснения приведем примеры таких событий:

  • Вода замерзла при температуре плюс десять (это невозможно).
  • Отсутствие электроэнергии никак не влияет на производство (так же невозможно, как и в предыдущем примере).

Более примеров приводить не стоит, так как описанные выше очень ярко отражают суть данной категории. Невозможное событие никогда не произойдет во время опыта ни при каких обстоятельствах.

Случайные события

Изучая элементы особое внимание стоит уделить именно данному виду события. Именно их и изучает данная наука. В результате опыта может что-то произойти или нет. Кроме этого, испытание может проводиться неограниченное количество раз. Яркими примерами могут служить:

  • Бросок монеты - это опыт, или испытание, выпадение орла - это событие.
  • Вытягивание мячика из мешка вслепую - испытание, попался красный шар - это событие и так далее.

Таких примеров может быть неограниченное количество, но, в общем, суть должна быть понятна. Для обобщения и систематизирования полученных знаний о событиях приведена таблица. Теория вероятности изучает только последний вид из всех представленных.

название

определение

Достоверные

События, происходящие со стопроцентной гарантией при соблюдении некоторых условий.

Поступление в учебное заведение при хорошей сдаче вступительного экзамена.

Невозможные

События, которые никогда не произойдут ни при каких условиях.

Идет снег при температуре воздуха плюс тридцать градусов по Цельсию.

Случайные

Событие, которое может произойти или нет в ходе проведения опыта/испытания.

Попадание или промах при бросании баскетбольного мяча в кольцо.

Законы

Теория вероятности - это наука, изучающая возможность выпадения какого-либо события. Как и другие, она имеет некоторые правила. Существуют следующие законы теории вероятности:

  • Сходимость последовательностей случайных величин.
  • Закон больших чисел.

При расчете возможности сложного можно использовать комплекс простых событий для достижения результата более легким и быстрым путем. Отметим, что законы теории вероятности легко доказываются с помощью некоторых теорем. Предлагаем для начала познакомиться с первым законом.

Сходимость последовательностей случайных величин

Отметим, что видов сходимости несколько:

  • Последовательность случайных величин сходима по вероятности.
  • Почти невозможное.
  • Среднеквадратическая сходимость.
  • Сходимость по распределению.

Так, с лету, очень тяжело вникнуть в суть. Приведем определения, которые помогут разобраться в данной теме. Для начала первый вид. Последовательность называют сходимой по вероятности , если соблюдено следующее условие: n стремится к бесконечности, число, к которому стремится последовательность, больше нуля и приближена к единице.

Переходим к следующему виду, почти наверное . Говорят, что последовательность сходится почти наверное к случайной величине при n, стремящейся к бесконечности, и Р, стремящейся к величине, приближенной к единице.

Следующий тип - это сходимость среднеквадратическая . При использовании СК-сходимости изучение векторных случайных процессов сводится к изучению их координатных случайных процессов.

Остался последний тип, давайте разберем кратко и его, чтобы переходить непосредственно к решению задач. Сходимость по распределению имеет и еще одно название - «слабое», далее поясним, почему. Слабая сходимость — это сходимость функций распределения во всех точках непрерывности предельной функции распределения.

Обязательно выполним обещание: слабая сходимость отличается от всех вышеперечисленных тем, что случайная величина не определена на вероятностном пространстве. Это возможно потому, что условие формируется исключительно с использованием функций распределения.

Закон больших чисел

Отличными помощниками при доказательстве данного закона станут теоремы теории вероятности, такие как:

  • Неравенство Чебышева.
  • Теорема Чебышева.
  • Обобщенная теорема Чебышева.
  • Теорема Маркова.

Если будем рассматривать все эти теоремы, то данный вопрос может затянуться на несколько десятков листов. У нас же основная задача - это применение теории вероятности на практике. Предлагаем вам прямо сейчас этим и заняться. Но перед этим рассмотрим аксиомы теории вероятностей, они будут основными помощниками при решении задач.

Аксиомы

С первой мы уже познакомились, когда говорили о невозможном событии. Давайте вспоминать: вероятность невозможного события равна нулю. Пример мы приводили очень яркий и запоминающийся: выпал снег при температуре воздуха тридцать градусов по Цельсию.

Вторая звучит следующим образом: достоверное событие происходит с вероятностью, равной единице. Теперь покажем, как это записать с помощью математического языка: Р(В)=1.

Третья: Случайное событие может произойти или нет, но возможность всегда варьируется в пределах от нуля до единицы. Чем ближе значение к единице, тем шансов больше; если значение приближается к нулю, вероятность очень мала. Запишем это математическим языком: 0<Р(С)<1.

Рассмотрим последнюю, четвертую аксиому, которая звучит так: вероятность суммы двух событий равняется сумме их вероятностей. Записываем математическим языком: Р(А+В)=Р(А)+Р(В).

Аксиомы теории вероятностей - это простейшие правила, которые не составит труда запомнить. Попробуем решить некоторые задачи, опираясь на уже полученные знания.

Лотерейный билет

Для начала рассмотрим простейший пример - лотерея. Представьте, что вы купили один лотерейный билет на удачу. Какова вероятность, что вы выиграете не менее двадцати рублей? Всего в тираже участвует тысяча билетов, один из которых имеет приз в пятьсот рублей, десять по сто рублей, пятьдесят по двадцать рублей, а сто - по пять. Задачи по теории вероятности основаны на том, чтобы найти возможность удачи. Сейчас вместе разберем решение выше представленного задания.

Если мы буквой А обозначим выигрыш в пятьсот рублей, то вероятность выпадения А будет равняться 0,001. Как мы это получили? Просто необходимо количество "счастливых" билетов разделить на общее их число (в данном случае: 1/1000).

В - это выигрыш в сто рублей, вероятность будет равняться 0,01. Сейчас мы действовали по тому же принципу, что и в прошлом действии (10/1000)

С - выигрыш равен двадцати рублям. Находим вероятность, она равняется 0,05.

Остальные билеты нас не интересуют, так как их призовой фонд меньше заданного в условии. Применим четвертую аксиому: Вероятность выиграть не менее двадцати рублей составляет Р(А)+Р(В)+Р(С). Буквой Р обозначается вероятность происхождения данного события, мы в предыдущих действиях уже их нашли. Осталось только сложить необходимые данные, в ответе мы получаем 0,061. Это число и будет являться ответом на вопрос задания.

Карточная колода

Задачи по теории вероятности бывают и более сложными, для примера возьмем следующее задание. Перед вами колода из тридцати шести карт. Ваша задача - вытянуть две карты подряд, не перемешивая стопку, первая и вторая карты должны быть тузами, масть значения не имеет.

Для начала найдем вероятность того, что первая карта будет тузом, для этого четыре делим на тридцать шесть. Отложили его в сторону. Достаем вторую карту, это будет туз с вероятностью три тридцать пятых. Вероятность второго события зависит от того, какую карту мы вытянули первой, нам интересно, был это туз или нет. Из этого следует, что событие В зависит от события А.

Следующим действием находим вероятность одновременного осуществления, то есть перемножаем А и В. Их произведение находится следующим образом: вероятность одного события умножаем на условную вероятность другого, которую мы вычисляем, предполагая, что первое событие произошло, то есть первой картой мы вытянули туз.

Для того чтобы стало все понятно, дадим обозначение такому элементу, как события. Вычисляется она, предполагая, что событие А произошло. Рассчитывается следующим образом: Р(В/А).

Продолжим решение нашей задачи: Р(А * В)=Р(А) * Р(В/А) или Р(А * В)=Р(В) * Р(А/В). Вероятность равняется (4/36) * ((3/35)/(4/36). Вычисляем, округляя до сотых. Мы имеем: 0,11 * (0,09/0,11)=0,11 * 0,82=0,09. Вероятность того, что мы вытянем два туза подряд, равна девяти сотым. Значение очень мало, из этого следует, что и вероятность происхождения события крайне мала.

Забытый номер

Предлагаем разобрать еще несколько вариантов заданий, которые изучает теория вероятности. Примеры решения некоторых из них вы уже видели в данной статье, попробуем решить следующую задачу: мальчик забыл последнюю цифру номера телефона своего друга, но так как звонок был очень важен, то начал набирать все по очереди. Нам необходимо вычислить вероятность того, что он позвонит не более трех раз. Решение задачи простейшее, если известны правила, законы и аксиомы теории вероятности.

Перед тем как смотреть решение, попробуйте решить самостоятельно. Нам известно, что последняя цифра может быть от нуля до девяти, то есть всего десять значений. Вероятность набрать нужную составляет 1/10.

Далее нам нужно рассматривать варианты происхождения события, предположим, что мальчик угадал и сразу набрал нужную, вероятность такого события равняется 1/10. Второй вариант: первый звонок промах, а второй в цель. Рассчитаем вероятность такого события: 9/10 умножаем на 1/9, в итоге получаем также 1/10. Третий вариант: первый и второй звонок оказались не по адресу, только с третьего мальчик попал туда, куда хотел. Вычисляем вероятность такого события: 9/10 умножаем на 8/9 и на 1/8, получаем в итоге 1/10. Другие варианты по условию задачи нас не интересуют, по этому нам осталось сложить полученные результаты, в итоге мы имеем 3/10. Ответ: вероятность того, что мальчик позвонит не более трех раз, равняется 0,3.

Карточки с числами

Перед вами девять карточек, на каждой из которых написано число от одного до девяти, цифры не повторяются. Их положили в коробку и тщательно перемешали. Вам необходимо рассчитать вероятность того, что

  • выпадет четное число;
  • двухзначное.

Перед тем как переходить к решению, оговорим, что m - это число удачных случаев, а n - это общее количество вариантов. Найдем вероятность того, что число будет четным. Не составит труда посчитать, что четных чисел четыре, это и будет наша m, всего возможно девять вариантов, то есть m=9. Тогда вероятность равняется 0,44 или 4/9.

Рассматриваем второй случай: количество вариантов девять, а удачных исходов быть вообще не может, то есть m равняется нулю. Вероятность того, что вытянутая карточка будет содержать двухзначное число, так же равняется нулю.

Похожие публикации